首页> 外文会议>Offshore technology conference >Impact of Interbedded Structure of Sand and Clay Layers on Geomechanical Responses of Hydrate-Bearing Sediments During Depressurization
【24h】

Impact of Interbedded Structure of Sand and Clay Layers on Geomechanical Responses of Hydrate-Bearing Sediments During Depressurization

机译:砂土层间互层结构对降压过程中水合物沉积物地质力学响应的影响

获取原文

摘要

This study investigates how the variation in sediment layer geometry of hydrate-bearing sediments (HBS) affects geomechanical behaviors of HBS under depressurization. Two reservoir models with different layering structures but with the same hydrate quantity were constructed and the reservoir responses were numerically investigated during gradual depressurization process. To simulate thermo-hydro-mechanically coupled multiphysics processes occurring in HBS, a series of governing equations were discretized based on a finite volume concept, and coded into an explicit finite difference numerical simulator. An explicitly coupled, time-marching algorithm was used to couple thermo-hydro-mechanical responses associated with depressurization-driven hydrate dissociation. We herein modelded a hydrate deposit in Ulleung Basin, Korea for the sediment properties and geological setting. The simulation results clearly demonstrate that the "densely" layered HBS structure, composed of thin and interbedded clay-sand layers, is more prone to geomechanical instability though it led to more gas production. It is attributed to various mechanisms, including (ⅰ) the rapid water drainage from neighboring thin clay layers, (ⅱ) the unique hydrate dissociation pattern in interbedded HBS, and (ⅲ) the transfer of shear stress from hydrate-bearing, "stiff sandy layers into adjacent thin "soft" clay layers. The layer geometry substantially affects not only the gas production but also the geomechanical stability of a hydrate reservoir. High-resolution sediment profiling appears to play an important role in numerical HBS simulations to reliably predict the feasibility of safe exploitation from layered HBS systems.
机译:这项研究调查了含水沉积物(HBS)的沉积物层几何形状的变化如何在减压下影响HBS的地质力学行为。构造了两种层状结构不同,水合物含量相同的储层模型,并对减压过程中的储层响应进行了数值研究。为了模拟HBS中发生的热-水-机械耦合的多物理场过程,基于有限体积的概念离散了一系列控制方程,并将其编码到显式的有限差分数值模拟器中。使用显式耦合的时间行进算法来耦合与降压驱动的水合物离解相关的热-水-机械响应。我们在这里为韩国Ulleung盆地的水合物矿床建模,以了解沉积物的性质和地质环境。模拟结果清楚地表明,由致密和分层的粘土-砂层组成的“致密”层状HBS结构虽然会导致更多的天然气产生,但更容易发生地质力学上的不稳定性。这归因于多种机理,包括(ⅰ)从相邻的薄粘土层中快速排水,(ⅱ)夹层HBS中独特的水合物解离模式,以及(ⅲ)含水合物的“刚性砂土”中的剪切应力的传递。层到相邻的薄“软”黏土层中,层的几何形状不仅会显着影响天然气产量,而且会影响水合物储层的地质力学稳定性,高分辨率泥沙剖析似乎在数值HBS模拟中起着重要作用,以可靠地预测可行性分层HBS系统进行安全开发的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号