首页> 外文会议>AIAA SciTech forum and exposition >Data-driven stochastic identification for fly-by-feel aerospace structures: Critical assessment of non-parametric and parametric approaches
【24h】

Data-driven stochastic identification for fly-by-feel aerospace structures: Critical assessment of non-parametric and parametric approaches

机译:飞行感觉航空结构的数据驱动随机识别:非参数和参数方法的关键评估

获取原文

摘要

In this work, a comparison and assessment of data-driven non-parametric and parametric stochastic identification approaches is presented. The non-parametric Welch-based spectral estimation and parametric "global" time-series modeling approaches are presented and assessed via a series of wind-tunnel experiments under varying flight states. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The global model identification framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. In addition, based on these identification approaches, two novel flight state identification approaches are postulated and experimentally validated, namely a non-parametric stall detection approach based on the statistical signal energy analysis and an inverse-type machine-learning method leveraging the use of stochastic global time-series models. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed piezoelectric sensors embedded in the composite layup provide the sensing capabilities. Experimental data collected are employed for the non-parametric and parametric identification approaches, with the latter being based on appropriate parameter estimation and model structure selection methods. The identified models are able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters, while the stall detection and machine-learning flight state identification approaches constitute a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
机译:在这项工作中,对数据驱动的非参数和参数随机识别方法进行了比较和评估。通过一系列在不同飞行状态下的风洞实验,提出并评估了基于非参数韦尔奇的谱估计和参数“全局”时间序列建模方法。在本文中,术语“整体”是指能够基于从这些状态的样本中记录的数据表示能够在任何允许的飞行状态下表示结构的模型的标识。全球模型识别框架基于随机时间序列模型,用于表示多种飞行状态下的结构动力学和气动弹性响应,每种状态下都具有多个变量,例如空速,攻角,高度和温度,从而形成飞行状态向量。另外,基于这些识别方法,提出了两种新颖的飞行状态识别方法并进行了实验验证,即基于统计信号能量分析的非参数失速检测方法和利用随机使用的逆型机器学习方法。全局时间序列模型。实验评估和评估基于原型生物启发自感应复合材料机翼,该机翼在多种飞行状态下进行了一系列风洞实验。嵌入在复合材料叠层中的分布式压电传感器可提供传感功能。收集的实验数据用于非参数和参数识别方法,后者基于适当的参数估计和模型结构选择方法。识别出的模型能够通过最少数量的估计参数成功地表示机翼在允许的飞行状态下的气动弹性响应,而失速检测和机器学习的飞行状态识别方法则是迈向下一代“飞越”的第一步具有状态感知能力的“感觉”航空航天器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号