首页> 外文会议>AIAA SciTech forum and exposition >Aeroelastic Trade Study of a Conformal Control Surface for a Printable Wind Tunnel Model
【24h】

Aeroelastic Trade Study of a Conformal Control Surface for a Printable Wind Tunnel Model

机译:可打印风洞模型的共形控制面的气动弹性贸易研究

获取原文

摘要

Multi-material 3D-printing can enable the fabrication of low-cost aeroelastic demonstrators with both conventional and biologically-inspired topologies. To realize and analyze these multiphysics-driven topologies, an analysis-centric geometric framework has been leveraged, namely the Computational Aircraft Prototype Syntheses. This framework enables the efficient exploration of a low-parameter-order morphing control surface, the Spined Control Surface. The topology of the control surface consists of curving, stiff "spines" that propagate along algorithmically-generated paths in a parametrically-defined vector field within a bounding box that marks the extent of the control surface on the planform. The spaces between these spines are spanned by softer material that provide both chordwise and spanwise stiffness coupling between the spines. The resultant control surface, realized in this case by multi-material 3D-printing and actuated by Macro-Fiber Composites, can create variations in both spanwise and chordwise deflection including smooth bending to ostensibly improve aerodynamic performance. The current work then comparatively evaluates the performance of several cases of a trailing edge control surface under aerodynamic loading. To determine relevant loading conditions, the control surface is implemented on a 3D-printed flying-wing flutter model. By scribing a desired location on the planform, componentized fluid-structure coupling for performance evaluation is achieved. The results demonstrate this methodology as an enabler for rapid design iteration via loosely couple aeroelastic analysis, with generalized, conservative load and displacement data transfer. The generality of this methodology is also demonstrated via application to leading-edge control surface showing similar deflections, indicating the ease of comparative analysis between leading and trailing edge control surfaces.
机译:多材料3D打印可以制造具有传统拓扑结构和生物启发性拓扑结构的低成本气弹演示器。为了实现和分析这些由多物理场驱动的拓扑,已经利用了以分析为中心的几何框架,即计算飞机原型合成。该框架可以有效地探索低参数顺序的变形控制曲面,即旋转控制曲面。控制面的拓扑结构由弯曲的刚性“脊柱”组成,这些脊柱沿算法生成的路径在边界框内的参数定义的矢量场中沿算法生成的路径传播,该边界框在平面图上标记了控制面的范围。这些棘刺之间的空间由较软的材料跨越,该材料在棘刺之间提供弦向和翼向的刚度耦合。在这种情况下,通过多材料3D打印实现的结果控制面由Macro-Fiber Composites驱动,可以在翼展方向和弦向挠度中产生变化,包括平滑弯曲,从表面上改善空气动力学性能。然后,当前工作比较地评估了在空气动力载荷下后缘控制表面的几种情况的性能。为了确定相关的载荷条件,在3D打印的飞翼颤振模型上实现控制面。通过在平面图上划一个所需的位置,可以实现用于性能评估的组件化流体结构耦合。结果表明,该方法可通过松散耦合的气动弹性分析以及广义的,保守的载荷和位移数据传输,实现快速设计迭代。这种方法的普遍性还通过应用于显示相似偏转的前缘控制表面得到了证明,这表明在前缘控制表面和后缘控制表面之间进行比较分析变得容易。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号