首页> 外文会议>AIAA SciTech forum and exposition >Estimation of Atmospheric Boundary Layer Turbulence Structure using Modeled UAS Dynamics within LES
【24h】

Estimation of Atmospheric Boundary Layer Turbulence Structure using Modeled UAS Dynamics within LES

机译:利用LES内的模拟UAS动力学估算大气边界层湍流结构

获取原文

摘要

Atmospheric turbulence, especially in the near-surface boundary layer is known to be under-sampled due to the need to capture a wide separation in length and time-scales and limitation in the number of sensors. Over the past decade, the use of Unmanned Aircraft Systems (UAS) technology is approaching ubiquitous proportions for a wide variety of applications, especially with the recent FAA relaxation of flying restrictions. From a geophysical sciences perspective, such technology would allow for sensing of large-scale atmospheric flows, particularly, atmospheric boundary layer (ABL) turbulence, air quality monitoring in urban settings where a multitude of small, minimally-invasive and mobile sensors can drastically alter our ability to study such complex phenomena. Currently available observational data of atmospheric boundary layer physics is so sparse and infrequent which significantly limits analysis. With the quantity and resolution of the data that can be measured using a swarm of UAS, three-dimensional reconstruction and deduction of coherent structures in ABL turbulence may be feasible. However, key challenges remain in the form of identifying optimal trajectories to fly the UAS to obtain the relevant quantifications of the turbulence, interpretation of the sensor data from mobile sensors and understanding how representative are the sparse measurements of the overall turbulent boundary layer. This leads to many fundamentally interesting questions that are itemized here: (a) How does UAS trajectory influence sensing and measurements of turbulence? (b) How does ABL turbulence impact UAS trajectory? (c) How to design optimal sensing strategy for canonical turbulence? The key to answering these questions requires the study and understanding of the coupled system of sUAS flight dynamics, controller and ABL turbulence. It is also worth mentioning that some of the above are relevant issues only for small UAS such as quadcopters whose trajectory can be modulated to ABL gusts as against medium-scale fixed wing UAS. In this paper, we leverage a unique sUAS-in-ABL simulation infrastructure that couples high fidelity Large-eddy Simulation (LES) of the ABL with 6-DOF model for the quadcopter dynamics and a controller for both waypoint navigation and geometric tracking.
机译:由于需要捕获长度和时间尺度上的宽间隔以及传感器数量的限制,已知大气湍流,尤其是近表面边界层的湍流欠采样。在过去的十年中,无人飞机系统(UAS)技术的使用正日益广泛应用于各种应用,尤其是最近FAA放宽了飞行限制。从地球物理科学的角度来看,这种技术将允许感测大规模的大气流,特别是大气边界层(ABL)湍流,城市环境中的空气质量监测,在这些环境中,许多小型,微创和移动传感器可能会发生巨大变化我们研究这种复杂现象的能力。当前可获得的大气边界层物理学的观测数据如此稀疏和罕见,这极大地限制了分析工作。由于可以使用大量UAS测量数据的数量和分辨率,在ABL湍流中三维重建和推导相干结构是可行的。然而,关键的挑战仍然是确定最佳航迹以驾驶UAS获得湍流的相关定量,解释来自移动传感器的传感器数据以及了解整体湍流边界层的稀疏测量的代表性如何。这就引出了许多根本上有趣的问题,在这里逐项列出:(a)UAS轨迹如何影响湍流的感测和测量? (b)ABL湍流如何影响UAS轨迹? (c)如何设计规范湍流的最佳传感策略?回答这些问题的关键需要对sUAS飞行动力学,控制器和ABL湍流耦合系统进行研究和理解。还值得一提的是,上述某些问题仅适用于小型UAS,例如与中型固定翼UAS相比可将其航迹调整为ABL阵风的四旋翼飞机。在本文中,我们利用独特的sUAS-in-ABL仿真基础架构,该架构将ABL的高保真大涡流仿真(LES)与用于四轴飞行器动力学的6自由度模型以及用于航点导航和几何跟踪的控制器相结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号