首页> 外文会议>IEEE Aerospace Conference >Nuclear Considerations for the Application of Lanthanum Telluride in Future Radioisotope Power Systems
【24h】

Nuclear Considerations for the Application of Lanthanum Telluride in Future Radioisotope Power Systems

机译:碲化镧在未来放射性同位素动力系统中的应用的核能考虑

获取原文

摘要

Thermoelectric-based radioisotope power systems (RPSs) produced in the United States convert the heat generated by the radioactive emission of alpha particles from plutonium dioxide (238puO2) into electricity by means of the Seebeck effect [1]. Certain designs for thermoelectric convertors propose the use of lanthanum telluride (La3Te4) materials due to their significant conversion capabilities [2]. The generation of neutrons from spontaneous fission and alpha-neutron (α, n) reactions is also associated with the decay of 238PuO2. A portion of these neutrons will interact with the thermoelectric materials and induce trace amounts of transmutation reactions in various lanthanum and tellurium isotopes. While very small quantities of several transmutation products are predicted, the most significant reaction channels are expected to produce trace amounts of iodine which will accumulate over time. Although iodine is classified as a halogen, it is the least reactive of the halogens, and as such, it is the most likely to be able to chemically convert back into the molecule I2. Since I2 is a gas at RPS temperatures, it may be possible for iodine to attack other components in the thermoelectric cavity of an RPS system. Iodine reacts easily with metals to produce a wide variety of salts. This behavior could affect the performance of La3Te4 thermoelectric devices, particularly the segmented architectures that include multiple sets of bonding and metallization layers. In this type of architecture, several segments of different thermoelectric materials are joined to increase the average thermoelectric figure of merit over a relatively large temperature gradient. It is plausible that sophisticated bonding/metallization layers could be required to join the segment interfaces to each other and to the cold- and hot-shoe materials. The long-term stability and performance of these segmented material combinations could degrade as a result of the potential formation and reactions of metal-iodide compounds at the segment interfaces. This paper (1) investigates the degree to which, if any, this process may threaten potential La3Te4 thermoelectric technologies, (2) presents calculations of the amount of iodine generated over the operational life of a radioisotope thermoelectric generator design, and (3) discusses the potential effects of the resulting material's chemical reactions in a segmented couple-level architecture containing La3Te4. Conclusions drawn from combined particle transport, transmutation, and thermochemical calculations for La3Te4 thermoelectric materials undergoing a notional 20-year mission scenario suggest that there is no significant potential for transmutation-induced thermoelectric (TE) performance degradation.
机译:美国生产的基于热电的放射性同位素动力系统(RPS)将二氧化p中α粒子的放射性发射所产生的热量转化为热量( 238 O 2 )通过塞贝克效应[1]转化为电能。热电转换器的某些设计建议使用碲化镧(La 3 4 )材料,因为它们具有显着的转化能力[2]。自发裂变和α-中子(α,n)反应产生的中子也与原子核的衰变有关。 238 O 2 。这些中子的一部分将与热电材料相互作用,并在各种镧和碲同位素中引发痕量的trans变反应。尽管预测了少量的几种trans变产物,但是最重要的反应通道预计会产生痕量的碘,碘会随着时间的推移而积累。尽管碘被归类为卤素,但它是卤素中反应性最低的,因此,它最有可能能够化学转化回分子I 2 。自从我 2 如果RPS温度为RPS气体,碘可能会侵蚀RPS系统热电腔中的其他组件。碘容易与金属反应生成多种盐。此行为可能会影响La的性能 3 4 热电设备,特别是包括多组粘合层和金属化层的分段式体系结构。在这种类型的体系结构中,将不同热电材料的多个段连接起来,以在相对较大的温度梯度上提高平均热电性能。可能需要复杂的粘结/金属化层,才能使扇形体的界面相互连接,并使冷,热靴材料相互连接。这些分段材料组合的长期稳定性和性能可能会由于分段界面处金属碘化物的潜在形成和反应而降低。本文(1)研究了此过程可能威胁到潜在La的程度 3 4 热电技术,(2)给出了在放射性同位素热电发生器设计的整个使用寿命中产生的碘量的计算,(3)讨论了在包含La的分段偶合层结构中所得材料化学反应的潜在影响 3 4 。结合La的粒子输运,trans变和热化学计算得出的结论 3 4 经历了20年预期任务的热电材料表明,trans变引起的热电(TE)性能下降的可能性不大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号