首页> 外文会议>Conference on composites at Lake Louise >HYBRID ORGANIC-INORGANIC NANO-COMPOSITES FOR SOLID-STATE BATTERY ELECTROLYTES
【24h】

HYBRID ORGANIC-INORGANIC NANO-COMPOSITES FOR SOLID-STATE BATTERY ELECTROLYTES

机译:固态电池电解质的混合有机-无机纳米复合材料

获取原文

摘要

Desired properties of solid electrolytes are high ionic conductivity and transference number, high shear modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Especially, elastic stiffness and ionic mobility are opposing attributes in a homogenous material, and a composite approach towards designing novel electrolytes is therefore advisable. We use a two-step sol-gel method to synthesize silica-based hybrid organic-inorganic materials for this application. First, a continuous porous silica structure is created that provides electrochemical stability and mechanical rigidity. This network also contains unreacted epoxy groups. In step 2, single-sided amine-functionalized polyethene glycol (PEG-NH2) infiltrates the pores via fluid exchange. As PEG-NH2 fills the pores, the amine groups react with the epoxy groups and anchor the polymer to the silica network, which provides highly conductive pathways. IR spectroscopy, Raman and Brillouin light scattering, impedance spectroscopy, small angel x-ray scattering (SAXS), charge-discharge cell testing is performed to identify the structural and chemical origins that underlie the performance of these hybrid electrolytes. A room temperature ionic conductivity in excess of 10~(-5) S/cm is reached (Fig. 1). The covalent bonding between polymer and silica is essential to enhancing the ionic conductivity without sacrificing mechanical stability. To better understand the reason for this we conducted systematic investigations into the mechanisms of cation transport in amorphous structures, both experimental and computational. We found that, for mixed network former glasses, the adiabatic bulk elastic modulus, measured using Brillouin light scattering (BLS), and the activation energy for the modifier cation conductivity are strictly correlated. Using data from NMR spectroscopy and BLS as input for a reaction equilibrium-based statistical thermodynamic analysis we derived a quantitative account of all possible network building units. The resulting statistical measures for the distribution of cation hopping pathways in these glasses led to the development of an improved transition state theory model for ion conduction in these materials. Our model allows us to assess the spatial extent of this deformation, as well as estimate the relative amounts of configurational and vibrational entropy changes associated with this thermally activated process. Atomistic models of these glasses established using MD simulations based on a reactive force field further substantiate our new kinetic theory, and allow us to derive materials design criteria for materials with simultaneously high ionic conductivity and elastic moduli.
机译:固体电解质的所需特性是高离子电导率和转移数,高剪切模量以防止枝晶生长,与电极的化学相容性以及易于制造成薄膜。尤其是,弹性刚度和离子迁移率是同质材料中的相反属性,因此建议采用一种设计新颖电解质的复合方法。我们使用两步溶胶-凝胶法合成用于此应用的二氧化硅基杂化有机-无机材料。首先,创建了连续的多孔二氧化硅结构,该结构提供了电化学稳定性和机械刚度。该网络还包含未反应的环氧基。在步骤2中,单面胺官能化的聚乙二醇(PEG-NH2)通过流体交换渗入孔中。当PEG-NH2填充孔时,胺基团会与环氧基团发生反应,并将聚合物锚固到二氧化硅网络上,从而提供了高传导性的途径。进行了红外光谱,拉曼和布里渊光散射,阻抗光谱,小天使X射线散射(SAXS),充放电电池测试,以确定构成这些混合电解质性能的结构和化学来源。室温离子电导率达到10〜(-5)S / cm以上(图1)。在不牺牲机械稳定性的情况下,聚合物与二氧化硅之间的共价键对增强离子电导率至关重要。为了更好地了解其原因,我们对阳离子在无定形结构中的迁移机理进行了系统的研究,包括实验和计算方面。我们发现,对于混合网络前玻璃,使用布里渊光散射(BLS)测量的绝热体积弹性模量与改性剂阳离子电导率的活化能严格相关。使用来自NMR光谱和BLS的数据作为基于反应平衡的统计热力学分析的输入,我们得出了所有可能的网络构建单元的定量说明。这些玻璃中阳离子跳跃路径分布的最终统计量导致了这些材料中离子传导的改进过渡态理论模型的发展。我们的模型使我们能够评估这种变形的空间范围,并估计与该热活化过程相关的构型和振动熵变化的相对量。使用基于反作用力场的MD模拟建立的这些玻璃的原子模型进一步证实了我们的新动力学理论,并允许我们导出同时具有高离子传导率和弹性模量的材料的材料设计标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号