首页> 外文会议>SME annual conference expo;CMA national western mining conference >DISCRETE MODELING OF A LONGWALL COAL MINE GOB FOR CFD SIMULATION
【24h】

DISCRETE MODELING OF A LONGWALL COAL MINE GOB FOR CFD SIMULATION

机译:CFD模拟的龙湾煤矿采空区的离散建模

获取原文

摘要

Researchers at the Colorado School of Mines have developed a full-scale, 3D longwall ventilation model capable of modeling methane gas explosions analyze explosion hazards in longwall coal mine gobs through computational fluid dynamics (CFD) modeling. One area of concern is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving still occurs. Most researchers have represented the entire gob as a porous medium that is governed by Darcy's law. While this assumption may be applicable for the consolidated center of the gob with significantly lower permeability and porosity compared to the surrounding edge area, Darcy-type flow may not apply directly behind the longwall shields and in the unconsolidated fringes of the gob along the gate roads. CFD model studies performed on longwall face airflow indicate that significant amounts of ventilation air leak from the face to the gob. This leakage is governed by gob permeability characteristics and caving conditions, especially near the headgate and tailgate corner areas. The study presented here adopts a hybrid approach to modeling the gob: the outer part of the gob is modeled as discrete objects that simulate coarse rock rubble, while the gob center is modeled as a porous medium. CFD simulations using 3m and 1.5m diameter obstacles in a cubic packing arrangement were found to adequately capture the bulk flow patterns commonly observed in longwall operations. Although both 3m and 1.5m cases have the same porosity, the reduction of the void space with the 1.5m obstacles reduced the amount of face leakage. Modeling results clearly show that merely matching the gob porosity values in the CFD model is not sufficient, as other parameters such as the packing arrangements and obstacle sizes can significantly change the resulting flow resistance.
机译:科罗拉多矿业学院的研究人员开发了一种全尺寸的3D长壁通风模型,该模型能够对甲烷气体爆炸进行建模,并通过计算流体力学(CFD)建模来分析长壁煤矿采空区的爆炸危险。一个令人关注的领域是长壁工作面正后方的活动采空区,在那里可能会积聚高浓度的甲烷,并且仍然会发生活动性顶板塌落。大多数研究人员将整个采空区表示为受达西定律控制的多孔介质。尽管此假设可能适用于与周围边缘区域相比具有较低渗透率和孔隙率的采空区固结中心,但达西型流动可能并不直接适用于长壁护盾的后面以及沿闸道的采空区未固结边缘。对长壁工作面气流进行的CFD模型研究表明,大量通风空气从工作面泄漏到采空区。这种泄漏是由采空区的渗透特性和崩落条件所决定的,尤其是在前门和后门的拐角区域附近。本文介绍的研究采用混合方法对采空区进行建模:将采空区的外部建模为离散对象,以模拟粗糙的岩石瓦砾,而采空区的中心建模为多孔介质。发现使用立方堆积填料中直径为3m和1.5m的障碍物进行的CFD模拟能够充分捕获长壁作业中通常观察到的大流量模式。尽管3m和1.5m情况下的孔隙率相同,但1.5m障碍物的空隙空间的减少减少了面漏的数量。建模结果清楚地表明,仅匹配CFD模型中的料滴孔隙度值是不够的,因为其他参数(例如填料布置和障碍物尺寸)会显着改变最终的流动阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号