首页> 外文会议>Conference on boundary and interior layers-computational and asymptotic methods >Automatic Variationally Stable Analysis for FE Computations: An Introduction
【24h】

Automatic Variationally Stable Analysis for FE Computations: An Introduction

机译:有限元计算的自动变分稳定分析:简介

获取原文

摘要

We introduce an automatic variationally stable analysis (AVS) for finite element (FE) computations of scalar-valued convection-diffusion equations with non-constant and highly oscillatory coefficients. In the spirit of least squares FE methods (Bochev and Gunzburger, Least-Squares Finite Element Methods, vol 166, Springer Science & Business Media, Berlin, 2009), the AVS-FE method recasts the governing second order partial differential equation (PDE) into a system of first-order PDEs. However, in the subsequent derivation of the equivalent weak formulation, a Petrov-Galerkin technique is applied by using different regularities for the trial and test function spaces. We use standard FE approximation spaces for the trial spaces, which are C~0, and broken Hilbert spaces for the test functions. Thus, we seek to compute pointwise continuous solutions for both the primal variable and its flux (as in least squares FE methods), while the test functions are piecewise discontinuous. To ensure the numerical stability of the subsequent FE discretizations, we apply the philosophy of the discontinuous Petrov-Galerkin (DPG) method by Demkowicz and Gopalakrishnan (Comput Methods Appl Mech Eng 199(23): 1558-1572,2010; Discontinuous Petrov-Galerkin (DPG) method, Tech. rep., The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 2015; SIAM J Numer Anal 49(5): 1788-1809,2011; Numer Methods Partial Differ Equ 27(1):70-105, 2011; Appl Numer Math 62(4):396-427,2012; Carstensen et al., SIAM J Numer Anal 52(3): 1335-1353, 2014), by invoking test functions that lead to unconditionally stable numerical systems (if the kernel of the underlying differential operator is trivial). In the AVS-FE method, the discontinuous test functions are ascertained per the DPG approach from local, decoupled, and well- posed variational problems, which lead to best approximation properties in terms of the energy norm. We present various 2D numerical verifications, including convection-diffusion problems with highly oscillatory coefficients and extremely high Peclet numbers, up to O(10~9). These show the unconditional stability without the need for any upwind schemes nor any other artificial numerical stabilization. The results are not highly diffused for convection-dominated problems nor show any strong oscillations, but adequately capture and indicate the presence of boundary layers, even for very coarse meshes and low polynomial degrees of approximation, p. Remarkably, we can compute the test functions by using the same p level as the trial functions without significantly impacting the numerical accuracy or asymptotic convergence of the numerical results. In addition, the AVS method delivers high numerical accuracy for the computed flux. Importantly, the AVS methodology delivers optimal asymptotic error convergence rates of order p+1 and p are obtained in the L~2 and H~1 norms for the primal variable. Our experience indicates that for convection-dominated problems we often observe a convergence rate of p + 1 for the L~2 norm of the flux variable.
机译:我们为具有非恒定和高振荡系数的标量值对流扩散方程的有限元(FE)计算引入了自动变分稳定分析(AVS)。本着最小二乘有限元方法的精神(Bochev和Gunzburger,最小二乘有限元方法,第166卷,Springer科学与商业媒体,柏林,2009年),AVS-FE方法重塑了主导的二阶偏微分方程(PDE)。进入一阶PDE系统。但是,在随后推导等效的弱公式时,通过对试验和测试函数空间使用不同的规则性来应用Petrov-Galerkin技术。对于试验空间,我们使用标准的FE近似空间(C〜0),对于测试函数,我们使用破碎的希尔伯特空间。因此,我们试图计算原始变量及其通量的点状连续解(如最小二乘有限元法),而测试函数是分段不连续的。为了确保后续有限元离散化的数值稳定性,我们采用了Demkowicz和Gopalakrishnan提出的不连续Petrov-Galerkin(DPG)方法的原理(Comput Methods Appl Mech Eng 199(23):1558-1572,2010; Discontinuous Petrov-Galerkin (DPG)方法,技术代表,德克萨斯大学奥斯汀分校计算工程与科学研究所,2015年; SIAM J Numer Anal 49(5):1788-1809,2011; Numer Methods Partial Differ Equ 27(1) ):70-105,2011; Appl Numer Math 62(4):396-427,2012; Carstensen et al。,SIAM J Numer Anal 52(3):1335-1353,2014),通过调用导致无条件稳定的数值系统(如果基础微分算子的核是微不足道的)。在AVS-FE方法中,通过DPG方法从局部,解耦和适当摆放的变量问题确定了不连续的测试功能,这些问题导致了能量范数方面的最佳近似性能。我们提出了各种二维数值验证,包括具有高振荡系数和极高Peclet数(高达O(10〜9))的对流扩散问题。这些表明无条件的稳定性,不需要任何迎风方案或任何其他人工数值稳定。对于以对流为主的问题,结果没有得到很好的扩散,也没有表现出任何强烈的振荡,但是即使对于非常粗糙的网格和低多项式近似度p,也可以充分捕获并表明边界层的存在。值得注意的是,我们可以使用与试验函数相同的p级别来计算检验函数,而不会显着影响数值精度或数值结果的渐近收敛。此外,AVS方法为计算出的通量提供了很高的数值精度。重要的是,AVS方法可为原始变量的L〜2和H〜1范数提供p + 1阶的最优渐近误差收敛率和p。我们的经验表明,对于对流占优的问题,对于通量变量的L〜2范数,我们经常观察到p +1的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号