首页> 外文会议>Asia-Pacific international symposium on aerospace technology >Fast Flutter Uncertainty Calculation Based on Arbitrary Mode Shapes and Reduced - Order Modeling
【24h】

Fast Flutter Uncertainty Calculation Based on Arbitrary Mode Shapes and Reduced - Order Modeling

机译:基于任意模式形状和降阶建模的快速颤振不确定度计算

获取原文

摘要

A new method for calculating flutter characteristics is presented using Arbitrary basis mode shapes and reduced-order modeling (ROM) techniques. It can be applied to aeroelastic uncertainty analysis efficiently and accurately, without recalculation of normal modes and aerodynamic force though structural parameters vary. First, a number of normal mode shapes of different structure samples is calculated by changing the baseline structural parameters, such as mass or stiffness variations. Then the reduced arbitrary basis mode shapes are extracted from the above mode shape samples using the principal component analysis (PCA) method. Therefore, the physical mode shapes of varied structures can be regarded as linear combination of the reduced arbitrary basis mode shapes. Hence, under the coordinate system of reduced arbitrary basis mode shapes, there is no need to recalculate the physical normal mode shapes when structure parameters vary. The Modal Assurance Criterial (MAC) is used to evaluate the accuracy of normal mode shapes represented by the reduced arbitrary basis modes. Afterwards, the generalized aerodynamic force coefficients under the dynamic motion of arbitrary basis mode is calculated by the CFD technique, which is identified to a reduced-order model by the observer method. Finally, in order to perform flutter analysis with aerodynamic reduced-order model under the coordinates of arbitrary basis mode, the uncertain aeroelastic equation is deduced under the new coordinate system, to consider the structural variations. Flutter analysis and uncertainty quantification is conducted on a flat plate by the polynomial chaos expansion (PCE). Compared with the Monte Carlo Simulation, results indicate that this method with ROM and PCE is accurate and much more efficient.
机译:提出了一种使用任意基模形状和降阶建模(ROM)技术计算颤振特性的新方法。它可以有效而准确地应用于气动弹性不确定性分析,而无需重新计算正常模式和气动力,尽管结构参数会有所不同。首先,通过更改基线结构参数(例如质量或刚度变化)来计算不同结构样本的许多标准模式形状。然后,使用主成分分析(PCA)方法从上述模式形状样本中提取经过简化的任意基本模式形状。因此,可以将变化结构的物理模式形状视为减少的任意基础模式形状的线性组合。因此,在减少的任意基本模式形状的坐标系下,当结构参数变化时,无需重新计算物理法线模式形状。模态保证标准(MAC)用于评估由简化的任意基模表示的正常模态形状的准确性。然后,通过CFD技术计算任意基模动态运动下的广义空气动力系数,并通过观察者方法将其识别为降阶模型。最后,为了在任意基础模式的坐标下用气动降阶模型进行颤振分析,在新的坐标系下推导了不确定的气动弹性方程,以考虑结构变化。通过多项式混沌展开(PCE)在平板上进行颤振分析和不确定性量化。与蒙特卡洛模拟相比,结果表明,这种使用ROM和PCE的方法是准确的,并且效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号