首页> 外文会议>SPIE Astronomical Telescopes + Instrumentation Conference >The reformatting advantage - Photonics vs conventional optics!
【24h】

The reformatting advantage - Photonics vs conventional optics!

机译:重新格式化的优势-光子学与传统光学!

获取原文

摘要

In recent decades, spectroscopic capabilities have been significantly enhanced by new technological developments, in particular spatial reformatting. Spatial reformatting allows multiple functionalities: the observation of a larger area of sky, obtaining the spectra of all spatial elements under the same atmospheric conditions; modification of the shape and size of the field of view; focal-ratio conversion for the optimized coupling between the telescope and the spectrograph; increase in the spatial and spectral resolving power; the observation of multiple objects; homogeneity in the illumination; scrambling of spatial and/or phase induced structure with the instrument, thus . improving the system stability; relocation of the exit pupil, especially important for telecentric systems. The impact of reformatting and the breadth of science cases is so great that many alternative methods and technologies have been proposed: image slicers using refractive or reflective solutions; optical fibers with different core sizes and geometries; microlenses used in isolation or combined with fibers and more recently, photonic devices such as Photonic lanterns to produce modal decomposition. In this paper, a comparison between all currently available options is presented, with a detailed analysis of their advantages and limitations and a proposal for a new reformatter combining slicers and photonic devices. This proposal presents the advantages of the other alternatives and additionally offers: minimization of focal-ratio degradation; produces image and modal decomposition; improves the throughput along the spectral range, increases the spectral resolving power and adds the functionality of scrambling. All of these advantages are combined in a system where photonic and astronomical instrumentation capabilities are joined in an innovative solution with many applications, like for example, the Extremely Large Telescope.
机译:近几十年来,通过新技术的发展,特别是空间重组,光谱学能力得到了显着提高。空间重新格式化允许多种功能:观察更大的天空区域,获得在相同大气条件下所有空间元素的光谱;修改视野的形状和大小;焦距比转换,以优化望远镜和光谱仪之间的耦合;增加空间和光谱分辨能力;观察多个物体;照明均匀性;因此,用仪器对空间和/或相位引起的结构进行加扰。提高系统稳定性;出瞳的重新定位,对于远心系统尤其重要。重新格式化的影响和科学案例的广度是如此之大,以至于提出了许多替代方法和技术:使用折射或反射解决方案的图像切片器;具有不同纤芯尺寸和几何形状的光纤;隔离或与纤维结合使用的微透镜,以及近来的光子设备,例如光子灯笼,用于产生模态分解。在本文中,将对所有当前可用选项进行比较,并对其优点和局限性进行详细分析,并提出结合切片器和光子器件的新型重整器的建议。该提议提出了其他替代方案的优点,并另外提供了:最小化焦比降低;产生图像和模态分解;在整个光谱范围内提高了通量,增加了光谱分辨能力,并增加了加扰功能。所有这些优点都组合在一个系统中,在该系统中,光子和天文仪器功能被结合到具有许多应用程序的创新解决方案中,例如,极大型望远镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号