首页> 外文会议>International Symposium on Optoelectronic Technology and Application >Research on Wide-angle Telescope Array Space Target Surveillance and Orbit Determination Method
【24h】

Research on Wide-angle Telescope Array Space Target Surveillance and Orbit Determination Method

机译:广角望远镜阵列空间目标监视与轨道确定方法研究

获取原文

摘要

The large field survey optical telescope system has strong spatial target information acquisition capabilities. Wide-angle telescope array as a typical large-field survey optical telescope system, can be used for the general survey of space targets, access to important parameters such as orbital parameters and shape and size parameters, is a powerful tool to grasp the spatial situation. In order to analyze the tracking effectiveness of the wide-angle telescope array for space targets and explore the best use scheme, this paper compares and analyzes the ability of the typical wide-angle telescope array and the ground-based large-caliber telescope to detect the space target and determine the space target's initial orbit. First, establish a spatial target orbit model. The STIC (Satellite Tool Kit) high-precision orbit model was used to calculate the theoretical position of the space target and ground station. Then based on the positioning accuracy of the telescope and the quality of the detection field of view, the detection error matrix of the wide-angle telescope array and the large-caliber telescope of the foundation is simulated respectively, and the spatial target optical detection position information is given in combination with the detection error matrix. Second, the initial orbit calculation is performed. The simulated space target detection data and ground station location data are substituted into the improved Laplace initial orbit calculation equation, and the spatial target orbital parameter determination research is carried out. Third, conduct the analysis of the orbital error. According to the characteristics of the two detection methods, the initial orbits of the space target under the two use modes are calculated and compared, and the orbit determination errors of the two detection methods under the same detection duration are compared and analyzed. At the same time, using the high-precision orbit model to perform the orbit simulation deduction on the initial orbit, deducing the curve of the orbital error within 5 hours; Finally, in order to analyze the influence of the detection duration on the accuracy of the initial track, the space target observation data with a detection time of 40 seconds to 170 seconds is simulated. The data is brought into the derailment determination equation, and the accuracy of the initial orbit determination of the space target under different detection durations is calculated. The simulation results show that the wide-angle telescope array detection arc length is long. When the detection duration exceeds 100 seconds, the initial orbit determination error is less affected by the telescope detection error, and the orbit accuracy is high, which can provide high-precision data for subsequent precision tracking. At the same time, the wide-angle telescope array detection field of view is large, so that it can meet the requirements of the census of the space target, can simultaneously monitor multiple targets for a long time, obtain spatial target luminosity change information, and has high spatial target monitoring comprehensive effectiveness. In terms of practical value, the price of the wide-angle telescope array is much lower than traditional high-precision telescopes and precision tracking radars, and has a high practical value.
机译:大视场光学望远镜系统具有很强的空间目标信息采集能力。广角望远镜阵列作为典型的大视野测量光学望远镜系统,可用于空间目标的一般测量,获取重要参数如轨道参数和形状及大小参数,是掌握空间情况的有力工具。为了分析广角望远镜阵列对空间目标的跟踪效果并探索最佳使用方案,比较并分析了典型的广角望远镜阵列和地面大口径望远镜的探测能力。空间目标并确定空间目标的初始轨道。首先,建立空间目标轨道模型。使用STIC(卫星工具套件)高精度轨道模型来计算空间目标和地面站的理论位置。然后根据望远镜的定位精度和探测视野的质量,分别模拟了广角望远镜阵列和大口径望远镜的探测误差矩阵,并确定了空间目标的光学探测位置。结合检测误差矩阵给出信息。其次,执行初始轨道计算。将模拟的空间目标探测数据和地面站位置数据代入改进的拉普拉斯初始轨道计算方程,进行了空间目标轨道参数确定研究。第三,进行轨道误差分析。根据两种探测方法的特点,计算并比较了两种使用方式下空间目标的初始轨道,并对两种探测方法在相同探测时间内的轨道确定误差进行了比较和分析。同时,使用高精度轨道模型对初始轨道进行轨道模拟推导,推导5小时内的轨道误差曲线;最后,为了分析检测持续时间对初始轨迹精度的影响,模拟了检测时间为40秒至170秒的空间目标观测数据。将数据带入脱轨确定方程,并计算在不同检测持续时间下空间目标初始轨道确定的准确性。仿真结果表明,广角望远镜阵列的检测弧长较长。当检测持续时间超过100秒时,望远镜确定误差对初始轨道确定误差的影响较小,并且轨道精度较高,可以为后续的精确跟踪提供高精度的数据。同时,广角望远镜阵列的检测视野较大,可以满足空间目标普查的要求,可以长时间同时监视多个目标,获得空间目标的光度变化信息,并且具有很高的空间目标监测综合效果。在实用价值上,广角望远镜阵列的价格远低于传统的高精度望远镜和精密跟踪雷达,具有很高的实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号