首页> 外文会议>ASME Pressure Vessels and Piping conference >VERIFICATION OF MAINFRAME COMPUTER STRUCTURE FINITE ELEMENT MODEL UNDER VIBRATION AND SEISMIC TESTS
【24h】

VERIFICATION OF MAINFRAME COMPUTER STRUCTURE FINITE ELEMENT MODEL UNDER VIBRATION AND SEISMIC TESTS

机译:振动和地震测试下主框架计算机结构有限元模型的验证

获取原文

摘要

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer's structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer's structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure's modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure's modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe's structural elements for improved dynamic response in the final physical certification test.
机译:较短的开发设计进度和越来越密集的产品设计给预测大型计算机结构的结构性能带来了困难的挑战。为了满足某些认证基准,例如Telcordia Technologies通用要求GR-63-CORE地震4区测试剖面,进行了物理测试。该测试将在功能完备且已加载的大型机系统上的设计周期结束时在外部位置进行。在设计周期的早期准确预测大型计算机的结构性能的能力对于缩短其开发时间至关重要。本文讨论了一种改进的方法,该方法可在进行物理测试之前很长时间就验证预测大型计算机结构性能的有限元分析结果。对框架结构进行了正弦扫描和随机振动测试,但是由于内部测试能力的限制,只能测试轻载结构。评估结构的模态刚度是实现有限元(FE)模型与物理系统之间良好相关性的关键。这通常是通过在有限元求解器中运行隐式模态分析并将其与使用正弦扫描输入的物理测试过程中获得的峰值频率进行比较来实现的。但是,线性隐式分析有其局限性。即,无法评估零件之间的内部非线性接触。因此,线性隐式分析对于单个物体可能是一个很好的近似值,但在检查其中物体之间的相互作用(非线性接触)很重要的物体集合时,可能不准确。在物体的非线性装配的情况下,不能有效地在测试和线性隐式有限元模型之间建立关联。本文探索了一种非线性的显式分析方法,通过将有限元模型置于振动波形中,然后使用快速傅立叶变换(FFT)对所得的加速度进行后处理,以得出峰值频率,从而评估结构的模态刚度。考虑到组件各部分之间的非线性内部接触,该结果与获得物理测试值的方式一致。这是用于比较正弦扫描测试数据和有限元分析结果的一种改进的验证方法。有限元模型的最终验证将是成功的物理地震测试。测试包括在三个方向上的高架地板和非高架地板环境中进行广泛的顺序单轴地震测试。将记录帧结构顶部的时域加速度,并将其与有限元模型进行比较。匹配这些加速度的频率内容将证明有限元模型的准确性。物理测试和建模结果的比较分析将用于完善大型机的结构元素,以在最终的物理认证测试中改善动态响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号