首页> 外文会议>ASME Pressure Vessels and Piping conference >EVALUATING LARGE ABOVEGROUND STORAGE TANKS SUBJECT TO SEISMIC LOADING PART Ⅱ: EXPLICIT DYNAMIC ANALYSIS WITH LIQUID SLOSHING EFFECTS
【24h】

EVALUATING LARGE ABOVEGROUND STORAGE TANKS SUBJECT TO SEISMIC LOADING PART Ⅱ: EXPLICIT DYNAMIC ANALYSIS WITH LIQUID SLOSHING EFFECTS

机译:地震荷载作用下大体积储罐的评估第二部分:具有液体晃动效应的显式动力分析

获取原文

摘要

The dynamic response of storage tanks subjected to seismic loading is complex. Analyzing the structural response of a tank is not only dependent on accurately modeling the major design features and simulating the seismic loading, but also the sloshing of the fluid contained within the tank can affect the overall behavior and likely failure modes. Advanced dynamic simulation techniques, such as the ones discussed herein, permit comparison between these closed-form methods and computational predictions; that is, any potential conservatism or lack thereof associated with traditional design by rule methodologies can be identified using computational analysis. Additionally, for tanks that were not originally designed to a modern Code or recommended practice that includes consideration for seismic loading, the computational analysis methods discussed in this study offer a means to evaluate the structural integrity of vintage tanks under seismic loading conditions that are still in service today. This paper discusses explicit dynamic finite element analysis (FEA) techniques to simulate seismic loading on a large, aboveground, in-service Ammonia storage tank that carries a high consequence of failure. The fluid-structure interaction and sloshing behavior of the contained fluid are directly accounted for. Commentary on using smooth particle hydrodynamics (SPH), coupled Eulerian-Lagrangian (CEL), and computational fluid dynamics (CFD) analysis techniques is provided. The underlying methodology behind these simulation techniques is discussed, and the overall dynamic response of the tank is investigated. The results from the explicit dynamic seismic simulations are compared with the current seismic design guidance provided in API 650 [1] and equivalent static simulation techniques (documented in Part I of this study [2]). Furthermore, this case study highlights a practical application where advanced analysis is employed to investigate a real-life fluid-structure interaction problem.
机译:承受地震载荷的储罐的动态响应是复杂的。分析储罐的结构响应不仅取决于准确地建模主要设计特征并模拟地震载荷,而且储罐中所含流体的晃动也会影响整体性能和可能的故障模式。先进的动态仿真技术,例如本文讨论的技术,可以在这些封闭形式的方法和计算预测之间进行比较。也就是说,可以通过计算分析来识别与规则设计方法相关的与传统设计相关的任何潜在保守性或缺乏保守性。此外,对于最初不是按照现代规范或建议的设计标准(未考虑地震荷载)设计的储罐,本研究中讨论的计算分析方法提供了一种方法,可以评估仍处于地震荷载条件下的老式储罐的结构完整性。今天的服务。本文讨论了显式动态有限元分析(FEA)技术,以模拟在大型地上服役的氨储罐上的地震载荷,该储罐会导致严重的破坏。直接考虑了所包含流体的流体-结构相互作用和晃动行为。提供了有关使用光滑粒子流体动力学(SPH),耦合欧拉-拉格朗日(CEL)和计算流体动力学(CFD)分析技术的评论。讨论了这些模拟技术背后的基本方法,并对罐的整体动态响应进行了研究。将显式动态地震模拟的结果与API 650 [1]中提供的当前地震设计指南以及等效的静态模拟技术(在本研究的第I部分中记录[2])进行了比较。此外,此案例研究突出了一种实际应用,其中使用高级分析来研究现实生活中的流体-结构相互作用问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号