【24h】

Cyber Resilient Flight Software for Spacecraft

机译:航天器的网络弹性飞行软件

获取原文

摘要

Rapidly evolving cyber threats to space systems increase the risk that skilled adversaries could disrupt, degrade, or destroy mission critical capabilities via cyber means. Exfiltration and/or modification of data is also a risk for space systems. Although the attack surface to space systems (supply chain, ground systems, networks, user terminals) is usually well protected, there is a high motivation for adversaries to seek out potential vulnerabilities on the spacecraft. Spacecraft architectures are typically based on heritage subsystems of hardware/software/firmware including real-time operating systems, embedded processors, shared bus architectures, and custom ASICs. These systems are highly redundant and resilient to component failures, since operation in the space environment of 15+ years is typical. However, spacecraft architectures were typically not designed with the cyber threat in mind. Well known cyber threat concepts (malware, privilege elevation, root-kits, system pivots, stack overflow, man-in-the-middle, reconnaissance) should now be considered when designing cyber defense for the spacecraft. A unique challenge for spacecraft cyber defense is the potential for denial-of-service attacks through the "safe mode" of the spacecraft. A cyber resilient spacecraft that is under attack will continue mission critical activities, initiate defensive measures, and "operate through" the attack without a trigger to a non-operational "safe mode" state. The Aerospace Corporation and Carnegie Mellon University Software Engineering Institute (SEI) are researching new approaches to spacecraft flight software for cyber resilient operations. This research includes: cyber threats relevant to the space environment, strengths and potential vulnerabilities for typical flight code processing, runtime assurance, analytics & detection, autonomous defense, and cyber assurance in the software lifecycle. Concepts will likely have application for avionics, SCADA, and other real-time operating environments.
机译:迅速发展的对空间系统的网络威胁增加了熟练的对手可能通过网络手段破坏,降级或破坏关键任务能力的风险。数据的泄漏和/或修改对于空间系统也是一种风险。尽管通常会很好地保护对太空系统(供应链,地面系统,网络,用户终端)的攻击面,但攻击者却有很高的动机来寻找航天器上的潜在漏洞。航天器架构通常基于硬件/软件/固件的传统子系统,包括实时操作系统,嵌入式处理器,共享总线架构和定制ASIC。这些系统具有很高的冗余度,并且可以抵抗组件故障,因为通常在15年以上的太空环境中运行。但是,航天器架构通常在设计时就没有考虑到网络威胁。现在,在设计航天器的网络防御时,应考虑使用众所周知的网络威胁概念(恶意软件,特权提升,root-kit,系统枢纽,堆栈溢出,中间人,侦察)。航天器网络防御的一个独特挑战是通过航天器的“安全模式”进行拒绝服务攻击的可能性。遭受攻击的网络弹性航天器将继续执行关键任务活​​动,采取防御措施,并“通过”攻击进行操作,而不会触发非操作“安全模式”状态。航空航天公司和卡内基梅隆大学软件工程学院(SEI)正在研究用于网络弹性运行的航天器飞行软件的新方法。这项研究包括:与空间环境有关的网络威胁,典型飞行代码处理的优势和潜在漏洞,运行时保证,分析与检测,自主防御以及软件生命周期中的网络保证。这些概念可能会在航空电子,SCADA和其他实时操作环境中得到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号