首页> 外文会议>Geothermal Resources Council annual meeting >Supercritical Geothermal Cogeneration: Combining Leading-Edge, Highly-Efficient Energy and Materials Technologies in a Load-Following Renewable Power Generation Facility
【24h】

Supercritical Geothermal Cogeneration: Combining Leading-Edge, Highly-Efficient Energy and Materials Technologies in a Load-Following Renewable Power Generation Facility

机译:超临界地热热电联产:在负荷跟随型可再生能源发电设施中结合了先进的高效能源和材料技术

获取原文

摘要

Geothermal power must contribute much more to the supply of clean renewable energy. Electricity generated from wind and solar power is intermittent and cannot alone balance the demands of the grid. Geothermal power provides baseload generation. The geothermal industry needs to both improve its return on investment and increase its flexibility in supplying electricity to the grid. A recent development that has great promise occurred last year, when the Iceland Deep Drilling Project successfully drilled a well into a supercritical geothermal reservoir. This breakthrough has the potential to offset the high front-end costs and risks of geothermal power by allowing high enthalpy production from supercritical wells. Such wells are expected to produce an order of magnitude increase in power output relative to conventional, subcritical geothermal systems, as discussed by Elders et al. (this volume). In addition to greater power output, supercritical resources cause dramatic changes in important properties of water. As a result, supercritical geothermal cogeneration (SGC) can produce electricity and create hydrogen with high efficiency and low costs using a flexible and thermally integrated energy plant combining: (1) a Brayton-cycle turbine generator using supercritical CO_2 as its working fluid; (2) electrolysis cells using ceramic proton-conducting membranes; (3) extraction of metals and minerals; and (4) desalination by switchable polarity solvent forward osmosis to supply deionized water required for brine processing, electrolysis and electrical power generation. The results will enable exploitation of new geothermal resources, and provide a flexible source of grid balancing for more rapid increases of intermittent wind and solar power enabling 100% use of renewables for both electric power generation and transportation.
机译:地热能必须为清洁可再生能源的供应做出更多贡献。风能和太阳能产生的电力是断断续续的,不能单独平衡电网的需求。地热能提供基本负荷的产生。地热行业不仅需要提高其投资回报率,而且还需要提高向电网供电的灵活性。去年,冰岛深度钻探项目成功地在超临界地热储层中钻了口井,这是一个充满希望的近期发展。这一突破有可能通过允许超临界井产生高焓来抵消高昂的前端成本和地热发电风险。如Elders等人所讨论的,与常规的亚临界地热系统相比,此类井有望在功率输出方面产生一个数量级的增长。 (此卷)。除了更大的功率输出外,超临界资源还会导致水的重要性质发生巨大变化。结果,超临界地热热电联产(SGC)可以通过结合使用灵活和热集成的能源装置来高效发电和低成本地生产氢气。(1)使用超临界CO_2作为工作流体的布雷顿循环涡轮发电机; (2)使用陶瓷质子传导膜的电解池; (3)提取金属和矿物; (4)通过可切换极性的溶剂正渗透进行脱盐,以提供盐水处理,电解和发电所需的去离子水。结果将能够开发新的地热资源,并为更加快速地增加间歇性风能和太阳能提供灵活的电网平衡资源,从而使100%的可再生能源用于发电和运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号