首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >ON THE INFLUENCE OF THE ENTRANCE SECTION ON THE ROTORDYNAMIC PERFORMANCE OF A PUMP SEAL WITH UNIFORM CLEARANCE: A SHARP EDGE VS. A ROUND INLET
【24h】

ON THE INFLUENCE OF THE ENTRANCE SECTION ON THE ROTORDYNAMIC PERFORMANCE OF A PUMP SEAL WITH UNIFORM CLEARANCE: A SHARP EDGE VS. A ROUND INLET

机译:入口部分对均一间隙的泵浦密封件的转子动力学性能的影响:锋利的边缘。圆形入口

获取原文

摘要

Secondary flows thru annular seals in pumps must be minimized to improve their mechanical efficiency. Annular seals, in particular balance piston seals, also produce rotordynamic force coefficients which easily control the placement of rotor critical speeds and determine system stability. A uniform clearance annular seal produces a direct (centering) static stiffness as a result of the sudden entrance pressure drop at its inlet plane when the fluid flow accelerates from an upstream (stagnant) flow region into a narrow film land. This so called Lomakin effect equates the entrance pressure drop to the dynamic flow head through an empirical entrance pressure loss coefficient. Most seal designs regard the inlet as a sharp edge or square corner. In actuality, a customary manufacturing process could produce a rounded corner at the seal inlet. Furthermore, after a long period of operation, a sharp corner may wear out into a round section. Notice that to this date, bulk flow model (BFM) analyses rely on a hitherto unknown entrance pressure coefficient to deliver accurate predictions for seal force coefficients. This paper establishes the ground to quantify the influence of an inlet round corner on the performance of a water lubricated seal reproducing a configuration tested by Marquette et al. (1997). The smooth surface seal has clearance C_r = 0.11 mm, length L= 35 mm, and diameter D = 76 mm (L/D = 0.46). The test case considers design operation at 10.2 krpm and 6.9 MPa pressure drop. Computational fluid dynamics (CFD) simulations apply to a seal with either a sharp edge or an inlet section with curvature r_c varying from 1/4C_r to 5C_r. Note the largest radius (r_c) is just 1.6% of the overall seal length L. Going from a sharp edge inlet plane to one with a small curvature r_c = 1/4C_r produces a ~20% decrease on the inlet pressure loss coefficient (ξ). A further reduction occurs with a larger circular corner; ξ drops from 0.43 to 0.17. That is, the entrance pressure loss will be lesser in a seal with a curved inlet. This can occur easily if the inlet edge wears due to solid particles eroding the seal inlet section. Further CFD simulations show that operating conditions in rotor speed and pressure drop do not affect the inlet loss coefficient, while the inlet circumferential swirl velocity does. In addition, further CFD results for a shorter (half) length seal produce a very similar entrance loss coefficient, whereas an enlarged (double) clearance seal leads to an increase in the entrance pressure loss parameter as the inlet section becomes less round. CFD predictions for most rotordynamic coefficients are within 10% relative to published test data, except for the direct damping coefficient C. For the seal with a rounded edge (r_c = 5 C_r) at the inlet plane, both the direct stiffness K and direct damping C decrease about 10% compared against the coefficients for the seal with a sharp inlet edge. The other force coefficients, namely cross-coupled stiffness and added mass, are unaffected by the inlet edge geometry. The same result holds for seal leakage, as expected. A BFM incorporates the CFD derived entrance pressure loss coefficients and produces rotordynamic coefficients for the same operating conditions. The CFD and BFM predictions are in good agreement, though there is still ~10% discrepancy for the direct stiffnesses delivered by the two methods. In the end, the analysis of the CFD results quantifies the pressure loss coefficient as a function of the inlet geometry for ready use in engineering BFM tools.
机译:通过泵中环形密封件的二次流量必须最小化,以提高其机械效率。环形密封件,特别是平衡活塞密封件,也会产生转子动压力系数,可以轻松控制转子临界转速的位置并确定系统稳定性。当流体流从上游(停滞)流动区域加速进入狭窄的薄膜区域时,由于其入口平面处的突然进入压力下降,均匀间隙的环形密封件会产生直接的(居中)静态刚度。这就是所谓的洛马金效应(Lomakin effect),它通过经验的入口压力损失系数将入口压降等同于动态流压头。大多数密封设计将进气口视为锋利的边缘或直角。实际上,常规的制造过程可能会在密封件入口处产生一个圆角。此外,长时间操作后,尖角可能会磨损成圆形部分。请注意,迄今为止,大流量模型(BFM)分析依靠迄今未知的入口压力系数来提供密封力系数的准确预测。本文为量化入口圆角对水润滑密封件性能的影响奠定了基础,该润滑件重现了Marquette等人测试过的构造。 (1997)。光滑的表面密封件的间隙C_r = 0.11 mm,长度L = 35 mm,直径D = 76 mm(L / D = 0.46)。该测试案例考虑了在10.2 krpm和6.9 MPa压降下的设计操作。计算流体动力学(CFD)模拟适用于具有锋利边缘或曲率r_c在1 / 4C_r到5C_r之间变化的入口截面的密封件。请注意,最大半径(r_c)仅为密封总长度L的1.6%。从锋利的进气口平面到曲率小的r_c = 1 / 4C_r会使进气口压力损失系数(ξ)降低〜20% )。更大的圆角会进一步减小。 ξ从0.43下降到0.17。即,在具有弯曲入口的密封件中,入口压力损失将较小。如果入口边缘由于固体颗粒侵蚀密封入口部分而磨损,这很容易发生。进一步的CFD模拟表明,转子转速和压降下的运行条件不会影响入口损耗系数,而入口周向涡流速度会影响入口损耗系数。此外,对于较短(一半)长度的密封件,进一步的CFD结果会产生非常相似的入口损失系数,而随着入口段的变圆度变大,(两倍)间隙密封件会导致入口压力损失参数的增加。除直接阻尼系数C以外,大多数转子动力学系数的CFD预测都相对于已发布的测试数据在10%以内。对于在进口平面处带有圆角边缘(r_c = 5 C_r)的密封件,直接刚度K和直接阻尼与具有尖锐入口边缘的密封件的系数相比,C降低了约10%。其他力系数,即交叉耦合的刚度和附加质量,不受入口边缘几何形状的影响。正如预期的那样,密封件泄漏也有相同的结果。 BFM结合了CFD得出的入口压力损失系数,并在相同的工作条件下产生了转子动力系数。 CFD和BFM的预测结果吻合良好,尽管两种方法的直接刚度仍相差约10%。最后,对CFD结果的分析将压力损失系数作为入口几何形状的函数进行了量化,以备在工程BFM工具中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号