首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
【24h】

LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence

机译:自由流湍流作用下涡轮叶片压力侧层流传热增强的LES研究

获取原文

摘要

Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re=5.1×10~5 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Goertler vortices are not observed for this airfoil geometry.
机译:在大型湍流条件下,使用大型涡流模拟(LES)对具有较大前缘的船尾加载叶片进行了数值研究。在不同长度的低(Tu≈0.7%),中(Tu≈7.9%)和高(Tu≈12.4%)自由流湍流下,在出口弦Re = 5.1×10〜5的线性雷诺数下,以线性级联进行数值模拟根据Varty和Ames(2016)的实验测量规定的比例。叶片压力侧的传热预测(即基于出口条件的斯坦顿数)与实验测量值非常吻合,并且很好地捕获了由于自由流湍流引起的传热增加。在Tu≈12.4%时,相对于低自由流湍流情况(Tu≈0.7%),自由流湍流使压力表面上的Stanton数增加,而没有边界层过渡到湍流,最大增加了大约50%。较高的自由流湍流会产生细长结构,并在前缘周围包裹高速条纹,这些条纹包含大量能量。在更下游处观察到速度条纹的放大,在后缘附近的最大r.m.s为0.3,但在压力侧未观察到向湍流的过渡或湍流点的形成。较高的自由流湍流下的传热增加主要是由于边界层内部沿机翼整个弦持续存在的低频速度扰动的初始放大。斯坦顿数似乎与边界层内部的水流速度波动成比例。对于这种翼型几何形状,未观察到Goertler涡旋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号