首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >THE PRESENT CHALLENGE OF TRANSONIC COMPRESSOR BLADE DESIGN
【24h】

THE PRESENT CHALLENGE OF TRANSONIC COMPRESSOR BLADE DESIGN

机译:跨音速压缩机叶片设计的现状

获取原文

摘要

The flow through a transonic compressor cascade shows a very complex structure due to the occuring shock waves. In addition, the interaction of these shock waves with the blade boundary layer inherently leads to a very unsteady flow behaviour. The aim of the current investigation is to quantify this behaviour and its influence on the cascade performance as well as to describe the occuring transonic flow phenomena in detail. Therefore, an extensive experimental investigation of the flow in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel of DLR at Cologne. In this process, the flow phenomena were thoroughly examined for an inflow Mach number of 1.21. The experiments investigate both, the laminar as well as the turbulent shock wave boundary layer interaction within the blade passage and the resulting unsteady behaviour. The experiments show a fluctuation range of the passage shock wave of about 10 percent chord for both cases, which is directly linked with a change of the inflow angle and of the operating point of the cascade. Thereafter, RANS simulations have been performed aiming at the verification of the reproducibility of the experimentally examined flow behavior. Here it is observed that the dominant flow effects are not reproduced by a steady numerical simulation. Therefore, a further unsteady simulation has been carried out in order to capture the unsteady flow behaviour. The results from this simulation show that the fluctuation of the passage shock wave can be reproduced but not in the correct magnitude. This leads to a remaining weak point within the design process of transonic compressor blades, because the working range will be overpredicted. The resulting conclusion of the study is that the use of scale resolving methods such as LES or the application of DNS is necessary to correctly predict unsteadiness of the transonic cascade flow and its impact on the cascade performance.
机译:由于发生冲击波,通过跨音速压缩机级联的流动显示出非常复杂的结构。另外,这些冲击波与叶片边界层的相互作用固有地导致非常不稳定的流动行为。当前研究的目的是量化这种行为及其对级联性能的影响,并详细描述发生的跨音速流动现象。因此,已经在科隆的DLR跨音速叶栅风洞内进行了跨音速压缩机叶栅中流动的广泛实验研究。在此过程中,对流入现象的马赫数为1.21的流动现象进行了彻底检查。实验研究了叶片通道内的层流以及湍流​​冲击波边界层的相互作用以及由此产生的不稳定行为。实验表明,在两种情况下,通道冲击波的弦幅波动范围都约为10%,这与入流角和叶栅工作点的变化直接相关。此后,已经进行了RANS模拟,旨在验证实验检查的流动行为的可重复性。在这里可以观察到,主要的流动效应没有通过稳定的数值模拟得到再现。因此,为了捕获不稳定流量行为,进行了进一步的不稳定仿真。该模拟的结果表明,可以再现通道冲击波的波动,但幅度不正确。这会导致跨音速压缩机叶片的设计过程中仍然存在薄弱环节,因为工作范围将被过度预测。研究得出的结论是,使用鳞片分解方法(例如LES)或DNS应用对于正确预测跨音速叶栅流动的不稳定性及其对叶栅性能的影响是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号