首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >THE MECHANISM OF THE FLOW IN THE HUB CORNER AND THE CONTROL BY TAILING EDGE GAPS
【24h】

THE MECHANISM OF THE FLOW IN THE HUB CORNER AND THE CONTROL BY TAILING EDGE GAPS

机译:集线器角部流动的机理及尾缘间隙的控制

获取原文

摘要

High-pressure ratio is one of the important characteristics of the sustainable development of the modern aero-engine compressor components. When the fluid flows through the compressor cascade row, it will be influenced by both the streamwise pressure gradient and the transverse pressure gradient, which will cause hub-corner separation or stall. In this paper, different diffusion factors are chosen for the cascades. Each diffusion factor has different turning angles. The formation mechanism of hub-corner separation is studied under the condition of zero angle of attack. Numerical simulation is used to study the influence of pressure gradient on the flow field in the corner. The scale of the concentrated shed vortex forms in the suction surface increases with the increasing of the transverse pressure gradient during the hub-corner separation. When the streamwise pressure gradient increases, the suction surface vortex forms the corner stall. By reasonable design, the two vortexes can cancel out each other. At this time, the loss of cascades is the minimum. Based on the flow mechanism of the corner separation/stall, the trailing gaps are set on three typical turn angle cascades. The results show that the trailing gaps can control the radial development of the suction surface vortex during the stall and improve flow field. The jet cannot blow the suction side boundary layer away during the corner separation, because the gap does not change the static pressure distribution at the root of the cascade. In a word, the trailing edge gaps can not only inhibit the separation in the hub corner but also have the minimum leakage loss at design point. It can be used as an effective and practical compressor design method.
机译:高压比是现代航空发动机压缩机组件可持续发展的重要特征之一。当流体流过压缩机叶栅排时,它将受到沿流方向的压力梯度和横向压力梯度的影响,这将导致毂角分离或失速。在本文中,为级联选择了不同的扩散因子。每个扩散因子具有不同的转向角。研究了零攻角条件下轮毂角分离的形成机理。数值模拟用于研究压力梯度对拐角处流场的影响。在毂角分离过程中,在吸力表面形成的集中的涡流的规模随着横向压力梯度的增加而增加。当沿流方向的压力梯度增加时,吸力表面涡流会形成转角失速。通过合理的设计,两个涡旋可以相互抵消。此时,级联的损失是最小的。根据转角分离/失速的流动机理,在三个典型的转角叶栅上设置尾随间隙。结果表明,尾部间隙可以控制失速期间吸力面涡流的径向发展并改善流场。在转角分离过程中,射流无法将吸力侧边界层吹走,因为该间隙不会改变叶栅根部的静压分布。总之,后缘间隙不仅可以抑制轮毂角处的分离,而且在设计点具有最小的泄漏损耗。它可以用作一种有效而实用的压缩机设计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号