首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Computational Analysis of Nuclear Thermal Propulsion Rocket Fuel and Prospective Coating Materials
【24h】

Computational Analysis of Nuclear Thermal Propulsion Rocket Fuel and Prospective Coating Materials

机译:核热推进火箭燃料和预期涂层材料的计算分析

获取原文
获取外文期刊封面目录资料

摘要

Space transportation systems have been advancing to meet the goals of long-distance space travel, namely faster transit speeds to maximize the time spent at the destination and to reduce the amount of radiation the crew and cargo are exposed to. The nuclear thermal propulsion rocket (NTPR) serves to reduce transit time by half that of chemical propellant rockets, but still has some fundamental technical challenges to be resolved before ideal operation can be achieved. During the experiments of the NTPR program, NERVA, the nuclear fuel elements lost significant mass throughout operation due to mechanical and chemical interactions with the high-temperature propellant, hydrogen. Different fuel compositions and coatings were tested for changes in the fuel mass loss. Niobium carbide and zirconium carbide coadngs were tested, but many others were suggested after the final tests of NERVA. Good coatings must be exceptionally resistant to the hydrogen interaction and crack propagation, have as high a thermal conductivity and melting temperature as possible, exhibit a low neutron absorption cross-section, and have the same thermal expansion coefficient as the fuel material. This paper presents a model of an NTPR reactor in the Monte Carlo N-Particle Transport Code (MCNP6). The fuel coatings and composition are varied, first to compare against the experimental NERVA results, and then novel coatings and compositions are analyzed. The goal of the modeling is to determine the best materials for reactor operation and then use the data from MCNP6 to evaluate the thermal and mechanical performance of the rocket.
机译:为了满足长距离太空旅行的目标(即更快的运输速度,以最大化在目的地花费的时间并减少机组人员和货物所受到的辐射量),太空运输系统一直在发展。核热推进火箭(NTPR)可将化学推进火箭的运输时间缩短一半,但在实现理想运行之前仍需要解决一些基本技术难题。在NTPR计划NERVA的实验过程中,由于与高温推进剂氢的机械和化学相互作用,核燃料元件在整个运行过程中损失了大量质量。测试了不同的燃料成分和涂层的燃料质量损失变化。对碳化铌和碳化锆复合材料进行了测试,但在NERVA的最终测试后,建议使用其他许多复合材料。良好的涂层必须具有极好的抗氢相互作用和裂纹扩展的能力,并具有尽可能高的导热率和熔化温度,中子吸收截面低,并且具有与燃料材料相同的热膨胀系数。本文介绍了蒙特卡罗N粒子运输法规(MCNP6)中的NTPR反应堆模型。改变燃料涂层和成分,首先将其与NERVA实验结果进行比较,然后分析新型涂层和成分。建模的目的是确定用于反应堆的最佳材料,然后使用来自MCNP6的数据来评估火箭的热性能和机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号