首页> 外文会议>Advanced machinery technology symposium >THE USE OF A NON-THERMAL GLIDING ARC PLASMA REFORMER TO GENERATE HYDROGEN-RICH SYNGAS FOR IMPROVING COMBUSTOR PERFORMANCE
【24h】

THE USE OF A NON-THERMAL GLIDING ARC PLASMA REFORMER TO GENERATE HYDROGEN-RICH SYNGAS FOR IMPROVING COMBUSTOR PERFORMANCE

机译:使用非热滑动电弧等离子体重整器以产生富含氢的合成气以改善燃烧器性能

获取原文

摘要

Non-thermal plasma-assisted partial oxidation of methane is considered with the intent to produce hydrogen-rich syngas with the least amount of electrical power. The syngas produced can be used to fuel quiet SOFC-based auxiliary generators, added to combustors to extend lean operation or further reformed to increase hydrogen yield (via the water-gas shift reaction, WGS) for low-temperature fuel cells and other applications needing hydrogen. Unlike catalytic fuel reformers that suffer from adverse issues involving catalyst deactivation (e.g., sintering, poisoning), plasma reforming is non-catalytic and offers: (1) rapid "on-demand" hydrogen-rich syngas production (quick startup), (2) fuel flexibility, and (3) the ability to produce a varying amount of syngas in response a time-dependent load (e.g., engine acceleration/ deceleration). In this work, experimental results using a non-thermal 'warm' gliding arc plasma discharge are reported. Our focus to date has been on rich methane-air. In terms of performance, near-equilibrium concentrations of hydrogen and carbon monoxide were achieved using rich methane-air premixtures having equivalence ratios between 2.5 to 4.0. Also, attention has been on the electrical energy needed to operate the plasma reformer, expressed in terms of a specific energy density (SED), defined here as the ratio of the electrical energy applied per unit mass of hydrogen or syngas (H_2+CO) produced. For a representative methane-air premixture (at equivalence ratio = 4.0, total flowrate = 35 SLPM, with no preheat), SED values determined from experimental measurements were 12.7 kWh/kg H_2 (45.8 MJ/ kg H_2) and 1.4 kWh/kg H_2+CO (5.1 MJ/kg H_2+CO) respectively. For hydrogen production, this SED is 38% of the lower heat value (LHV) of hydrogen (which is 33 kWh/kg H_2), meaning that roughly 1/3 of the chemical energy associated with the combustion of 1 kg of hydrogen is needed in the form of electricity to generate the 1 kg of hydrogen in the first place from methane. Efforts are currently underway to determine ways to lower the SED through improved thermal management (heat recuperation). With preheating of the methane-air reactants to 550°C (prior to the inlet to the plasma reformer), SED values as low as 5.2 kWh/kg H_2 (18.7 MJ/kg H_2) and 0.51 kWh/kg H_2+CO (1.8 MJ/kg H_2+CO) have been achieved (for a total flowrate of 72.4 SLPM, O/C=1.3 (Φ=3.1), 610W). These are the lowest values achieved to date. For hydrogen production, this SED value is only 16% of the LHV for H_2 (rather than 38% of the LHV without preheating) while for syngas production with preheating, the SED value of 0.51 kWh/kg H_2+CO is also lower (by almost a factor of 3) than the 1.4 kWh/kg H_2+CO SED value achieved without preheating.
机译:甲烷的非热等离子体辅助部分氧化被认为是与意图产生电功率的量最少的富含氢气的合成气。产生的合成气可用于基于SOFC燃料安静辅助发电机,加入到燃烧器以延长稀燃运行或进一步重整以增加氢气产量(通过水 - 煤气变换反应,WGS)用于低温燃料电池和其他应用程序需要氢。不同于催化燃料改性,从涉及催化剂失活不良问题的影响(例如,烧结,中毒),等离子重整非催化和优惠:(1)快速“按需”富氢合成气生产(快速启动),(2 )燃料灵活性,和(3)以响应合成气的变化的量的时间依赖性负载(例如,发动机的加速/减速)的能力。在这项工作中,报告使用非热“温暖”滑动弧等离子体放电实验结果。我们的重点迄今一直对富含甲烷的空气。在性能方面,使用具有当量比至4.0至2.5之间的富甲烷气预混料分别实现氢气和一氧化碳的近平衡浓度。另外,人们的注意力一直在操作等离子重整,在特定的能量密度(SED),此处定义为电能的比表示所需要的电能施加每氢或合成气(H_2 + CO)的单位质量产生的。对于代表性的甲烷 - 空气预混合(在当量比= 4.0,总流速= 35 SLPM,没有预热),SED值由实验测量确定为12.7千瓦时/公斤H_2(45.8 MJ / kg的H_2)和1.4千瓦时/公斤H_2 +分别CO(5.1兆焦/千克H_2 + CO)。用于制氢,这是SED下热值氢(LHV)(其为33千瓦时/公斤H_2)的38%,这意味着与1公斤氢的燃烧相关联的化学能的大致1/3,需要在电的形式,以产生1公斤氢在从甲烷首位。目前人们正在努力以确定如何通过改进的热管理(回热量)降低SED。与(入口到等离子体重整之前)的甲烷 - 空气的反应物到550℃的预热,SED值低至5.2千瓦时/公斤H_2(18.7 MJ / kg的H_2)和0.51千瓦时/公斤H_2 + CO(1.8兆焦/千克H_2 + CO)已经实现(对于72.4 SLPM,O / C = 1.3(Φ= 3.1的总流速),610W)。这是迄今为止取得的最低值。用于制氢,这SED值是LHV为H_2(不预热LHV的而不是38%)的只有16%,而对于合成气生产与预热,的SED值0.51千瓦时/公斤H_2 + CO也较低(由几乎3比不预热达到1.4千瓦时/公斤H_2 + CO SED值的因子)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号