首页> 外文会议>ASME gas turbine India conference >NUMERICAL ANALYSIS OF JET IMPINGEMENT COOLING USING CONVERGING CONICAL HOLE FOR BLADE LEADING EDGE
【24h】

NUMERICAL ANALYSIS OF JET IMPINGEMENT COOLING USING CONVERGING CONICAL HOLE FOR BLADE LEADING EDGE

机译:叶片前缘会聚圆锥孔对射流冲击冷却的数值分析

获取原文

摘要

The objective of this present work is to investigate numerically the effect of converging conical hole on blade cooling at leading edge. Diameter ratio of the converging conical holes is maintained as two with a converging angle of 20°. Cylindrical geometry used by Lee et al. [5] for the experimental investigation is taken as base reference for this present numerical investigation. Turbulence model study is carried out with three different models and kco-SST is found to give closer result with the experimental data. Subsequent investigations are carried out using kco-SST turbulence model. The target surface for the present study is 19.05 cm in radius and the diameter of the impingement hole is 1.30 cm, 2.15 cm 3.40 cm. The jet hole to the target surface spacing is varied as R/4, R/2 and 3R/4. The steady-state Reynolds Averaged Navier Stokes equations are solved for different impingement hole diameters at Reynolds number of 11000, 23000 and 50000. The target surface is maintained at constant heat flux of 10000 W7m2. Numerically computed Nusselt number and temperature distribution for the convergent conical hole and cylindrical hole are compared. Around 186 % increase in Nu and 13% decrease in surface temperature is observed at the stagnation point for the optimum case in this present study i.e, jet spacing R/2, converging conical hole diameter 2.15 cm and Re 23000. The converging conical hole configuration increases the fluid velocity in the potential core region and enhances the heat transfer. It is followed by 185 % increase in Nu and 15.58 % reduction in target surface temperature for Re 11000 and 170% increase in Nu and 7.28 % reduction in temperature for Re 50000.
机译:本工作的目的是在数值上研究锥形孔的收敛对前缘叶片冷却的影响。会聚圆锥形孔的直径比保持为两个,会聚角为20°。 Lee等人使用的圆柱几何形状。 [5]用于实验研究作为本次数值研究的基础参考。用三种不同的模型进行了湍流模型研究,发现kco-SST与实验数据更接近结果。随后的研究使用kco-SST湍流模型进行。本研究的目标表面半径为19.05厘米,撞击孔的直径为1.30厘米,2.15厘米和3.40厘米。喷射孔到目标表面的间距为R / 4,R / 2和3R / 4。在雷诺数分别为11000、23000和50000时,针对不同的冲击孔直径,求解了稳态雷诺平均Navier Stokes方程。目标表面保持在10000 W7m2的恒定热通量下。比较了收敛的锥形孔和圆柱孔的数值计算的努塞尔数和温度分布。在本研究的最佳情况下,在停滞点观察到Nu的增加约186%,表面温度降低了13%,即射流间距R / 2,会聚圆锥孔直径2.15 cm和Re 23000。增加了潜在核心区域中的流体速度并增强了热传递。随后,对于Re 11000,Nu增加185%,目标表面温度降低15.58%;对于Re 50000,Nu增加170%,温度降低7.28%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号