首页> 外文会议>SPIE Optical Systems Design Conference >Transport mirror laser damage mitigation technologies on the National Ignition Facility
【24h】

Transport mirror laser damage mitigation technologies on the National Ignition Facility

机译:国家点火装置上的传输镜激光损伤减轻技术

获取原文

摘要

There are 830 transport mirrors with a combined surface area of approximately 255 m~2 of precision multilayer coatings deposited on 50 metric tons of BK7 glass in the high fluence transport section of the National Ignition Facility (NIF). With peak fluences over 20 J/cm2 at 1053 nm, less than five percent of these mirrors are exchanged annually due to laser damage since full system operations began in 2009. Multiple technologies have been implemented to achieve these low exchange rates. The coatings are complex dichroics designed to reflect the fundamental wavelength (1053 nm) and an alignment beam (374 nm) while suppressing target backscatter wavelengths (351 nm & 400-700 nm) from backward propagation up the beamlines. Each optic is off-line laser conditioned to nominally 50% over the average fluence and nominally 90% of the peak fluence allowing the final laser conditioning to occur on-line during NIF operations. Although the transport section of NIF is sealed in a clean argon environment, air knives were installed on upward facing transport mirrors to blow off particulates that could accumulate and initiate laser damage. Beam dumps were installed in between the final optics assembly and the final transport mirrors to capture ghost reflections from the anti-reflection coated surfaces on the transmissive optics used for polarization rotation, frequency conversion, and focusing the 192 laser beams on target. Spot blockers, normally used for the final optics, are sometimes used to project a shadow over transport mirror laser damage in an effort to arrest laser damage growth and extend transport mirror lifetime. Post analysis of laser-damaged mirrors indicates that the dominant causes of laser damage are from surface particulates and the 351-nm wavelength target backscatter.
机译:在国家点火设施(NIF)的高通量运输区域中,有830台运输镜,其总表面积约为255 m〜2的精密多层涂层沉积在50吨BK7玻璃上。自2009年全面系统运行以来,由于激光损坏,每年只能更换不到5%的反射镜,其峰值通量在2053 / cm2时达到10J / cm2。自从2009年开始全面系统运行以来,已经采用了多种技术来实现这些低交换率。涂层是复杂的二向色镜,旨在反射基本波长(1053 nm)和对准光束(374 nm),同时抑制目标反向散射波长(351 nm和400-700 nm)沿光束线向后传播。每个光学器件都经过离线激光调节,标称值超过平均通量的50%,峰值通量标称值的90%,从而使最终的激光调节可以在NIF操作期间在线进行。尽管NIF的运输部分在干净的氩气环境中密封,但气刀仍安装在朝上的运输镜上,以吹走可能积聚并引发激光损伤的微粒。将光束收集器安装在最终光学组件和最终传输镜之间,以捕获来自透射光学器件上的防反射涂层表面的幻影反射,该偏振镜用于偏振旋转,频率转换以及将192束激光束聚焦在目标上。通常用于最终光学器件的光斑阻挡器有时用于在运输镜激光损伤上方投射阴影,以阻止激光损伤的增长并延长运输镜的使用寿命。激光损坏的反射镜的后期分析表明,激光损坏的主要原因是表面微粒和351 nm波长目标反向散射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号