首页> 外文会议>SPIE Photonics Europe Conference >Improving color lensless microscopy reconstructions by self-calibration
【24h】

Improving color lensless microscopy reconstructions by self-calibration

机译:通过自校准改善彩色无透镜显微镜重建

获取原文

摘要

Lensless color microscopy is a recent 3D quantitative imaging method allowing to retrieve physical parameters characterizing microscopic objects spread in a volume. The main advantages of this technique are related to its simplicity, compactness, low sensitivity of the setup to vibrations and the possibility to accurately characterize objects. The cost-effectiveness of the method can be further increased using low-end laser diodes as coherent sources and CMOS color sensor equipped with a Bayer filter array. However, the central wavelength delivered by this type of laser is generally known only with a limited precision and can evolve because of its dependence on temperature and power supply voltage. In addition, Bayer-type filters of conventional color sensors are not very selective, resulting in spectral mixing (crosstalk phenomenon) of signals from each color channel. Ignoring these phenomena leads to significant errors in holographic reconstructions. We have proposed a maximum likelihood estimation method to calibrate the setup (central wavelength of the laser sources and spectral mixing introduced by the Bayer filters) using spherical objects naturally present in the field of view or added (calibration objects). This calibration method provides accurate estimates of the wavelengths and of the crosstalk, with an uncertainty comparable to that of a high-resolution spectrometer. To perform the image reconstruction from color holograms following the self-calibration of the setup, we describe a regularized inversion method that includes a linear hologram formation model, sparsity constraints and an edge-preserving regularization. We show on holograms of calibrated objects that the self-calibration of the setup leads to an improvement of the reconstructions.
机译:无透镜彩色显微镜是一种最新的3D定量成像方法,允许检索表征散布在体积中的微观对象的物理参数。该技术的主要优点与它的简单,紧凑,对振动的灵敏度低以及精确表征物体的可能性有关。使用低端激光二极管作为相干源以及配备了拜耳滤波器阵列的CMOS颜色传感器,可以进一步提高该方法的成本效益。然而,通常仅以有限的精度来知道由这种类型的激光器传递的中心波长,并且由于其对温度和电源电压的依赖性而可以发生变化。另外,常规色彩传感器的拜耳型滤光片不是很选择性,导致来自每个色彩通道的信号的光谱混合(串扰现象)。忽略这些现象会导致全息重建中的重大错误。我们提出了一种最大似然估计方法,以使用自然存在于视场中或添加的球形物体(校准物体)来校准设置(激光源的中心波长和拜耳滤波器引入的光谱混合)。这种校准方法可以准确估计波长和串扰,其不确定性可与高分辨率光谱仪相媲美。为了根据设置的自校准从彩色全息图执行图像重建,我们描述了一种正则化的反演方法,该方法包括线性全息图形成模型,稀疏性约束和边缘保留正则化。我们在校准对象的全息图上显示,设置的自校准可导致重建效果的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号