首页> 外文会议>SPIE Medical Imaging Conference >Deep learning for medical image segmentation - using the IBM TrueNorth Neurosynaptic System
【24h】

Deep learning for medical image segmentation - using the IBM TrueNorth Neurosynaptic System

机译:用于医学图像分割的深度学习-使用IBM TrueNorth Neurosynaptic System

获取原文

摘要

Deep convolutional neural networks have found success in semantic image segmentation tasks in computer vision and medical imaging. These algorithms are executed on conventional von Neumann processor architectures or GPUs. This is suboptimal. Xeuromorphic processors that replicate the structure of the brain are better-suited to train and execute deep learning models for image segmentation by relying on massively-parallel processing. However, given that they closely emulate the human brain, on-chip hardware and digital memory limitations also constrain them. Adapting deep learning models to execute image segmentation tasks on such chips, requires specialized training and validation.In this work, we demonstrate for the first-time, spinal image segmentation performed using a deep learning network implemented on neuromorphic hardware of the IBM TrueNorth Neurosynaptic System and validate the performance of our network by comparing it to human-generated segmentations of spinal vertebrae and disks. To achieve this on neuromorphic hardware, the training model constrains the coefficients of individual neurons to {-1,0,1} using the Energy Efficient Deep Neuromorphic (EEDN) networks training algorithm. Given the ~1 million neurons and 256 million synapses, the scale and size of the neural network implemented by the IBM TrueNorth allows us to execute the requisite mapping between segmented images and non-uniform intensity MR images >20 times faster than on a GPU-accelerated network and using <0.1 W. This speed and efficiency implies that a trained neuromorphic chip can be deployed in intra-operative environments where real-time medical image segmentation is necessary.
机译:深度卷积神经网络已在计算机视觉和医学成像的语义图像分割任务中取得成功。这些算法在常规的冯·诺依曼处理器架构或GPU上执行。这不是最理想的。复制大脑结构的Xeuromorphic处理器更适合通过依赖大规模并行处理来训练和执行深度学习模型,以进行图像分割。但是,由于它们紧密模拟人脑,因此片上硬件和数字存储器的局限性也限制了它们。调整深度学习模型以在此类芯片上执行图像分割任务需要进行专门的培训和验证。在这项工作中,我们首次演示了使用在IBM TrueNorth Neurosynaptic System的神经形态硬件上实现的深度学习网络执行的脊柱图像分割并通过将其与人为生成的脊椎和椎间盘分割相比较来验证我们网络的性能。为了在神经形态硬件上实现此目标,训练模型使用能量有效的深度神经形态(EEDN)网络训练算法将单个神经元的系数约束为{-1,0,1}。给定约100万个神经元和2.56亿个突触,IBM TrueNorth实现的神经网络的规模和大小使我们能够执行分段图像和非均匀强度MR图像之间的必要映射,其速度比在GPU上快20倍以上。加速网络并使用<0.1W。这种速度和效率意味着可以在需要实时医学图像分割的术中环境中部署经过训练的神经形态芯片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号