首页> 外文会议>IEEE Aerospace Conference >Onboard targeting law for finite-time orbital maneuver in cislunar orbit
【24h】

Onboard targeting law for finite-time orbital maneuver in cislunar orbit

机译:顺时针轨道有限时间回旋的机载目标定律

获取原文
获取外文期刊封面目录资料

摘要

This study addresses a new onboard targeting law used for finite-time orbital maneuvers in cislunar orbits, and is motivated by international discussion regarding the design architecture of future space stations in cislunar orbits. The current concept study focuses on a subset of the halo families specified as Near Rectilinear Halo Orbits (NRHOs) of the Earth-Moon system. According to the mission sequence identified in literature, the transfer sequence from Low Earth Orbit (LEO) to NRHO requires orbital maneuvers with large delta-V of about 250 m/s, which is significantly larger than the delta-V required in rendezvous missions to the International Space Station in LEO. A spacecraft used for a cislunar transfer mission must be designed with the capability to execute large orbital maneuvers using the limited thrust force of its own engines. Moreover, the unique conditions of orbital dynamics dominated by the features of the multibody problem must be considered. Previous work proposed a new guidance logic that achieves precise execution accuracy used for finite-time orbital maneuvers of the cislunar transfer sequence. The logic basically utilizes a trajectory optimization technique, and derives the time series of thrust angles during a finite-time maneuver. In practical application, navigation and control errors prior to the orbital maneuver induce deviations of orbital states from that of the nominal maneuver arc. Real-time updates of the guidance profile must be made to compensate for these deviations. This paper presents an onboard targeting law to achieve this compensation with sufficient accuracy. The targeting law generates an updated guidance arc in the form of a polynomial. Coefficients of the polynomial are calculated by solving simultaneous equations that are derived from equality constraints of the two-point boundary value problem with updated orbital states. The control profile is calculated by the first and second derivatives of the polynomial combined with an equation of motion linearized around states of the nominal guidance arc. The proposed onboard targeting law is evaluated by means of simulations. It is therefore concluded that the proposed targeting law can derive an updated guidance arc and a control profile with sufficient accuracy. The guidance law in the form of a polynomial is simple and appropriate in terms of onboard software implementation.
机译:这项研究提出了一种新的机载目标定律,该定律用于顺月轨道上的有限时间轨道机动,并且受到有关未来在顺月轨道上空间站的设计架构的国际讨论的推动。当前的概念研究集中在指定为地球-月亮系统的近直线光晕轨道(NRHO)的光晕族的子集。根据文献中确定的任务序列,从低地球轨道(LEO)到NRHO的转移序列需要具有约250 m / s的大delta-V的轨道操纵,这大大大于交会任务中的delta-V所需要的。 LEO国际空间站。设计用于月牙转移任务的航天器必须具有使用其自身发动机的有限推力执行大型轨道机动的能力。此外,必须考虑由多体问题的特征支配的轨道动力学的独特条件。先前的工作提出了一种新的制导逻辑,该逻辑可以实现精确的执行精度,用于顺时针传递序列的有限时间轨道操纵。该逻辑基本上利用了轨迹优化技术,并在有限时间机动过程中得出了推力角的时间序列。在实际应用中,在轨道操纵之前的导航和控制误差会引起轨道状态与名义操纵弧的偏离。必须对引导配置文件进行实时更新以补偿这些偏差。本文提出了一种机载目标定律,以实现足够准确的补偿。瞄准定律以多项式形式生成更新的引导弧。通过求解联立方程来计算多项式的系数,该联立方程是从具有更新的轨道状态的两点边值问题的等式约束得出的。通过将多项式的一阶和二阶导数与围绕名义引导弧的状态线性化的运动方程相结合来计算控制轮廓。拟议的机载目标定律通过仿真进行评估。因此得出的结论是,拟定的目标定律可以足够精确地得出更新的制导弧和控制曲线。多项式形式的制导律在机载软件实现方面既简单又适用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号