首页> 外文会议>SPWLA annual logging symposium;Society of Petrophysicists and Well Log Analysts, inc >AN INTEGRATED WORKFLOW TO ESTIMATE PERMEABILITY THROUGH QUANTIFICATION OF ROCK FABRIC USING JOINT INTERPRETATION OF NUCLEAR MAGNETIC RESONANCE AND ELECTRIC MEASUREMENTS
【24h】

AN INTEGRATED WORKFLOW TO ESTIMATE PERMEABILITY THROUGH QUANTIFICATION OF ROCK FABRIC USING JOINT INTERPRETATION OF NUCLEAR MAGNETIC RESONANCE AND ELECTRIC MEASUREMENTS

机译:核磁共振与电学联合解释通过岩棉定量通透性的综合工作流程

获取原文

摘要

Variable depositional cycles and severe diagenesis areamong the main contributing factors to the complexpore network encountered in formations such ascarbonates. This complexity is often not taken intoaccount reliably in conventional models forpermeability assessment. Conventional methods forpermeability assessment, including electrical-basedmodels (e.g., Katz and Thompson) and NuclearMagnetic Resonance (NMR)-based models (e.g.,Coates and Schlumberger-Doll-Research), eitherrequire pore-scale characterization of pore network orextensive calibration efforts such as detection of cutoffvalues and assessment of constant model parameters.Joint evaluation of dielectric permittivity, resistivity,and NMR measurements enables capturing porenetworkconnectivity, tortuosity, and throat-sizedistribution for real-time and reliable permeabilityevaluation, which significantly improves permeabilityassessment. Such joint interpretation enables taking intoaccount pore structure in assessment of permeability.The objectives of this paper include (a) estimatingparameters that quantify rock fabric features (e.g.,tortuosity, effective pore size, throat-size distribution)by joint interpretation of electrical resistivity, dielectricpermittivity, and NMR measurements, (b) developing anew workflow for permeability assessment thatincorporates the quantified rock fabric parameters, and(c) validating the reliability of the new permeabilitymodel in core-scale domain using electrical resistivity,dielectric permittivity, NMR, Mercury InjectionCapillary Pressure (MICP), and permeabilitymeasurements. To achieve the aforementionedobjectives, we introduce a workflow to estimate rockfabric properties as inputs for permeability assessment.NMR measurements will be used to estimate theporosity and the effective pore size. Dielectricpermittivity and resistivity measurements to estimatetortuosity constriction factor. Then, we calculate thepore-throat-size distribution from the estimatedconstriction factor and effective pore size. Finally, theaforementioned quantitative rock fabric parameters willbe used to estimate permeability without core-based orimage-based calibration efforts.We successfully validated the introduced workflow onfive core-scale samples from different lithofacies takenfrom three carbonate formations. Estimates of porethroatradius obtained from the new method were inagreement with those from MICP measurements. Weuse the estimated pore- and pore-throat radii, tortuosity,and constriction factor for quantification of rock fabricin reliable permeability assessment. The proposedworkflow significantly reduced the relative error inpermeability estimates by 92%, compared to theconventional permeability models (i.e., calibratedporosity-permeability correlations). Furthermore, thenew method eliminates the need for cutoffs andexcessive calibration efforts in permeability assessmentby honoring and quantifying rock fabric.
机译:可变的沉积周期和严重的成岩作用 复杂的主要因素之一 地层中遇到的孔隙网络,例如 碳酸盐。通常不考虑这种复杂性 在传统模型中可靠地说明 渗透性评估。常规方法 渗透率评估,包括基于电的 模型(例如,Katz和Thompson)和核能 基于磁共振(NMR)的模型(例如, Coates和Schlumberger-Doll-Research) 需要孔网络的孔尺度表征或 广泛的校准工作,例如检测截止 值和恒定模型参数的评估。 共同评估介电常数,电阻率, 和NMR测量可捕获孔网 连通性,曲折度和喉咙大小 实时可靠的渗透率分布 评估,可显着提高渗透性 评估。这种联合解释可以考虑 在评估渗透率时考虑孔隙结构。 本文的目标包括(a)估算 量化岩石结构特征的参数(例如, 曲折度,有效孔径,喉咙尺寸分布) 通过电阻率,电介质的联合解释 介电常数和NMR测量,(b) 用于渗透率评估的新工作流程 合并了量化的岩石结构参数,并且 (c)验证新磁导率的可靠性 使用电阻率在核心尺度域中建立模型, 介电常数,NMR,汞注入 毛细压力(MICP)和渗透性 测量。为了达到上述目的 目标,我们引入了估算岩石的工作流程 织物特性作为渗透性评估的输入。 NMR测量将用于估算 孔隙率和有效孔径。电介质 介电常数和电阻率测量以估算 曲折收缩因子。然后,我们计算 估计的孔喉尺寸分布 收缩因子和有效孔径。最后, 前述的定量岩布参数将 在没有基于岩心的情况下用于估算渗透率 基于图像的校准工作。 我们已成功验证了引入的工作流程 从不同岩相采集的五个岩心样品 来自三个碳酸盐岩地层。估计的喉咙 新方法获得的半径在 与MICP的测量结果一致。我们 使用估计的孔喉半径和曲率半径, 岩体定量的收缩率和收缩率 在可靠的渗透率评估中。建议 工作流程显着减少了以下方面的相对误差 渗透率估计为92%,而 常规渗透率模型(即已校准 孔隙度-渗透率相关性)。此外, 新方法消除了临界值,并且 渗透率评估中过度的校准工作 通过尊重和量化岩石结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号