首页> 外文会议>ASME Pressure Vessels and Piping conference >A MODIFIED MICROSTRUCTURE-BASED CREEP DAMAGE MODEL FOR CONSIDERING PRIOR LOW CYCLE FATIGUE DAMAGE EFFECTS
【24h】

A MODIFIED MICROSTRUCTURE-BASED CREEP DAMAGE MODEL FOR CONSIDERING PRIOR LOW CYCLE FATIGUE DAMAGE EFFECTS

机译:一种基于微结构的蠕变损伤模型,用于考虑先前的低周疲劳损伤效应

获取原文

摘要

A modified continuum damage mechanics (CDM) model was proposed to predict the creep behavior of P92 steel with prior low cycle fatigue (LCF) damage. In order to investigate the damage mechanisms of prior LCF, microstructural observations of P92 steel after various prior LCF and subsequent creep exposures were performed. Results show that the key creep degradation is associated with the martensite lath recovery. Based on the physics of microstructural evolutions, three state variable formulas which represent damage mechanisms related to martensite lath recovery were employed to account for the prior LCF damage. The three state variable formulas which describe the damage evolution with prior LCF cycles were coupled with Hayhurst CDM model. The main advantage of the modified CDM creep model lies in its ability to directly predict creep behavior with different levels of prior LCF damage. The only parameter needed to be known for the prediction is the martensite lath width after prior LCF. Comparison of the predicted and experimental results shows that the proposed model can give a reasonable prediction for creep behavior. Moreover, this model also shows good predictive ability at different strain amplitudes of prior LCF.
机译:提出了一种改进的连续损伤力学模型(CDM),以预测具有先前的低周疲劳(LCF)损伤的P92钢的蠕变行为。为了研究以前的LCF的损伤机理,在进行了各种先前的LCF和随后的蠕变暴露后,对P92钢进行了显微组织观察。结果表明,关键的蠕变降解与马氏体板条的恢复有关。基于微观结构演化的物理学,采用了三个状态变量公式来表示与马氏体板条恢复相关的损伤机理,以解释先前的LCF损伤。用Hayhurst CDM模型结合了描述状态变化的三个状态变量公式,这些公式描述了先前的LCF循环的损伤演化。修改后的CDM蠕变模型的主要优点在于,它能够直接预测具有不同水平的先前LCF损坏的蠕变行为。预测所需知道的唯一参数是先前的LCF之后的马氏体板条宽度。预测结果与实验结果的比较表明,所提出的模型可以为蠕变行为提供合理的预测。此外,该模型还显示了在先前LCF的不同应变幅度下的良好预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号