首页> 外文会议>ASME international mechanical engineering congress and exposition >COMPUTATIONAL ANALYSIS FOR VALIDATION OF BLAST INDUCED TRAUMATIC BRAIN INJURY AND PROTECTION OF COMBAT HELMET
【24h】

COMPUTATIONAL ANALYSIS FOR VALIDATION OF BLAST INDUCED TRAUMATIC BRAIN INJURY AND PROTECTION OF COMBAT HELMET

机译:爆炸性创伤性脑损伤和战斗头盔防护验证的计算分析

获取原文

摘要

Current understanding of blast wave transmission and mechanism of primary traumatic brain injury (TBI) and the role of helmet is incomplete thus limiting the development of protection and therapeutic measures. Combat helmets are usually designed based on costly and time consuming laboratory tests, firing range, and forensic data. Until now advanced medical imaging and computational modeling tools have not been adequately utilized in the design and optimization of combat helmets. The goal of this work is to develop high fidelity computational tools, representative virtual human head and combat helmet models that could help in the design of next generation helmets with improved blast and ballistic protection. We explore different helmet configurations to investigate blast induced brain biomechanics and understand the protection role of helmet by utilizing an integrated experimental and computational method. By employing the coupled Eulerian-Lagrangian fluid structure interaction (FSI) approach we solved the dynamic problem of helmet and head under the blast exposure. Experimental shock tube tests of the head surrogate provide benchmark quality data and were used for the validation of computational models. The full-scale computational NRL head-neck model with a combat helmet provides physical quantities such as acceleration, pressure, strain, and energy to blast loads thus provides a more complete understanding of the conditions that may contribute to TBI. This paper discusses possible pathways of blast energy transmission to the brain and the effectiveness of helmet systems at blast loads. The existing high-fidelity image-based finite element (FE) head model was applied to investigate the influence of helmet configuration, suspension pads, and shell material stiffness. The two-phase flow model was developed to simulate the helium-air shock wave interaction with the helmeted head in the shock tube. The main contribution was the elucidation of blast wave brain injury pathways, including wave focusing in ocular cavities and the back of head under the helmet, the effect of neck, and the frequency spectrum entering the brain through the helmet and head. The suspension material was seen to significantly affect the ICP results and energy transmission. These findings can be used to design next generation helmets including helmet shape, suspension system, and eye protection.
机译:目前对爆炸波传播和原发性颅脑损伤(TBI)的机制以及头盔的作用的了解不完整,从而限制了保护措施和治疗措施的发展。战斗头盔通常是根据昂贵且费时的实验室测试,射程和法医数据设计的。迄今为止,先进的医学成像和计算建模工具尚未在战斗头盔的设计和优化中得到充分利用。这项工作的目标是开发高保真计算工具,具有代表性的虚拟人头和战斗头盔模型,这些模型可以帮助设计具有改进的爆炸和弹道保护功能的下一代头盔。我们探索了不同的头盔配置,以研究爆炸诱导的大脑生物力学,并通过利用集成的实验和计算方法来了解头盔的保护作用。通过采用耦合的欧拉-拉格朗日流体结构相互作用(FSI)方法,我们解决了爆炸暴露下头盔和头部的动态问题。头部替代物的实验性减震管测试提供了基准质量数据,并用于验证计算模型。带有战斗头盔的全尺寸NRL头颈计算模型可为爆炸载荷提供物理量(例如加速度,压力,应变和能量),因此可以更全面地了解可能导致TBI的条件。本文讨论了爆炸能量传输到大脑的可能途径,以及爆炸载荷下头盔系统的有效性。现有的基于高保真度的基于图像的有限元(FE)头部模型用于研究头盔配置,悬挂垫和壳体材料刚度的影响。开发了两相流模型,以模拟氦气-空气冲击波与冲击管中带头盔的头部的相互作用。主要的贡献是阐明了爆炸性波脑损伤的途径,包括波聚焦在眼腔和头盔下的头部后部,颈部的影响以及通过头盔和头部进入大脑的频谱。悬浮液被认为会显着影响ICP结果和能量传输。这些发现可用于设计下一代头盔,包括头盔形状,悬挂系统和护目镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号