首页> 外文会议>American Society for Composites technical conference;American Society for Composites >Finite Element Based Buckling Cross-sectional Optimization for Composite Arrows
【24h】

Finite Element Based Buckling Cross-sectional Optimization for Composite Arrows

机译:基于有限元的复合箭头屈曲截面优化

获取原文

摘要

In archery, dynamic buckling during the launch phase compromises the targetaccuracy of arrows. For both dynamic and quasi-static arrow buckling, the critical loaddepends upon the area moment of inertia of the cross-section which should beincreased at constant arrow weight, by redistributing the material as far away from theprincipal point of the cross-section as possible, and while keeping the material thickenough to prevent local buckling.In this paper we present an effort to optimize the cross-sectional shape of acomposite arrow shaft, using a finite element based, quasi static buckling analysiskeeping the length and area of the cross-section constant. The composite columnconsidered is assumed pinned at both ends and is assumed made with fibers orientedalong the length of the column. Four cross-sectional shapes, tubular circular, tubularequilateral triangular, star shaped and star with beads are analyzed in this study. Thecomposite column is modeled in ABAQUS, and the buckling load is determined byusing the “Linear Perturbation, Buckle” analysis. The transition from global to localbuckling characterized by a decrease in bucking load and change in the buckled shapeof the column is determined for each cross-sectional shape. The point of transitionmarks the maximum load that can be sustained for that cross-sectional shape. Themaximum load for all the cross-sections is determined and compared. The tubularcircular cross-section composite column is found to provide the highest buckling loadfollowed by the star with bead cross-section, star shaped cross-section and tubularequilateral triangular cross-section composite column in the respective order. Thus, ofthe shapes considered, the tubular circular cross-section is the optimum shape for thecross-section of the arrow shaft.
机译:在射箭中,发射阶段的动态屈曲会损害目标 箭头的准确性。对于动态和准静态箭头屈曲,临界载荷 取决于横截面的面积惯性矩,该惯性矩应为 通过在远离箭头的方向上重新分配材质,以恒定的箭头重量增加了 尽可能保持横截面的主点,同时保持材料的厚度 足以防止局部屈曲。 在本文中,我们提出了一项旨在优化截面形状的工作。 复合箭杆,使用基于有限元的准静态屈曲分析 保持横截面的长度和面积不变。复合柱 被认为是两端都钉住的,并且假定是用取向纤维制成的 沿列的长度。四种横截面形状,管状圆形,管状 在这项研究中分析了等边三角形,星形和带珠子的星形。这 复合柱在ABAQUS中建模,屈曲载荷由下式确定: 使用“线性摄动,带扣”分析。从全球到本地的过渡 屈曲,其特征在于屈曲载荷减小且屈曲形状发生变化 对于每个横截面形状,确定柱的高度。过渡点 表示该横截面形状可以承受的最大载荷。这 确定并比较所有横截面的最大载荷。管状的 发现圆形截面复合柱可提供最高屈曲载荷 其次是带有珠子横截面,星形横截面和管状的星形 等边三角形截面的复合柱按各自顺序排列。因此, 考虑到形状,管状圆形横截面是最适合的形状 箭头轴的横截面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号