首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >OPTIMIZING A HELICAL GROOVE SEAL WITH GROOVES ON BOTH THE ROTOR AND STATOR SURFACES
【24h】

OPTIMIZING A HELICAL GROOVE SEAL WITH GROOVES ON BOTH THE ROTOR AND STATOR SURFACES

机译:用转子和定子表面上的沟槽优化螺旋沟槽密封

获取原文

摘要

Helical groove seals are non-contacting annular seals commonly used in pumps within the impeller stages to sustain a pressure differential for a given leakage. Helical groove seals have continuously cut grooves, like the threads of a screw, on the surface of the rotor, the surface of the stator, or both. The two main components of the flow within helical groove seals are axial flow and groove flow. The axial flow serves to reduce the leakage by dissipating kinetic energy as the fluid expands in the grooves and then is forced to contract within the jet stream region. The groove flow serves to reduce the leakage by acting as screw pump. The fluid within the grooves is displaced towards the high pressure region as it spins with the rotor. Previous work has shown that seals with grooves on both the surface of the rotor and the surface of the stator can sustain higher pressure differentials for a given leakage than seals with grooves on only one surface. The goal of this study is to optimize the leakage performance of a double surface helical groove seal for a given set of operating conditions. To accomplish this goal, simulations are run in ANSYS CFX. A sufficient mesh with appropriate boundary layers is determined from the mesh independence study. The turbulence model is k-ε turbulence for water at 25°C. This is the first paper to present numerical results for the performance of helical groove seals with grooves on both the rotor and the stator. The design parameters used in the optimization are inner (rotor) groove size, inner helix angle, outer (stator) groove size, and outer helix angle. A Kennard-Stone algorithm, which optimally spaces the simulations within the design space, is used to select the designs to be simulated. A multifactor quadratic regression is derived. Backward regression is used to reduce the performance function to only statistically significant terms. Finally, the optimal seal design is derived from the performance function and is simulated to demonstrate the predictive power of the performance function. Interaction terms for the rotor and stator design parameters will be used to explore the mechanism whereby helical groove seals with grooves on both the rotor and the stator surfaces are able to have lower leakage than helical groove seals with grooves on just one surface. The end result of this study is a seal design which minimizes leakage and therefore improve machine efficiency.
机译:螺旋槽密封是非接触式环形密封,通常用于叶轮级内的泵中,以在给定泄漏情况下维持压差。螺旋槽密封件在转子的表面,定子的表面或两者上均具有连续切割的沟槽,例如螺钉的螺纹。螺旋槽密封件中的两个主要流动成分是轴向流和槽流。当流体在凹槽中膨胀,然后被迫在射流区域内收缩时,轴向流通过耗散动能来减少泄漏。槽流通过充当螺杆泵来减少泄漏。凹槽内的流体随着转子旋转而朝着高压区域移动。先前的工作表明,在给定的泄漏量下,在转子表面和定子表面上均具有凹槽的密封件比仅在一个表面上具有凹槽的密封件能够承受更高的压差。这项研究的目的是针对给定的一组工作条件优化双面螺旋槽密封件的泄漏性能。为了实现这个目标,在ANSYS CFX中运行仿真。根据网格独立性研究确定具有适当边界层的足够网格。湍流模型是25°C时水的k-ε湍流。这是第一篇介绍在转子和定子上均带有凹槽的螺旋凹槽密封件性能的数值结果的论文。优化中使用的设计参数是内(转子)凹槽尺寸,内螺旋角,外(定子)凹槽尺寸和外螺旋角。使用Kennard-Stone算法(在设计空间内最佳地隔开模拟)来选择要模拟的设计。得出多因素二次回归。向后回归用于将绩效函数简化为仅具有统计意义的术语。最后,从性能函数推导出最佳密封设计,并对其进行仿真以证明性能函数的预测能力。转子和定子设计参数的交互作用项将用于探索这样一种机制,即,在转子和定子表面上均带有槽的螺旋槽密封件比仅在一个表面上带有槽的螺旋槽密封件具有更低的泄漏量。这项研究的最终结果是一种密封设计,可以最大程度地减少泄漏并因此提高机器效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号