首页> 外文会议>ASME Pressure Vessels and Piping conference >MODELING OF HYPERVELOCITY IMPACT EXPERIMENTS USING GAMMA-SPH TECHNIQUE
【24h】

MODELING OF HYPERVELOCITY IMPACT EXPERIMENTS USING GAMMA-SPH TECHNIQUE

机译:利用GAMMA-SPH技术对超高速冲击实验进行建模

获取原文

摘要

A series of experiments were performed to study plastic deformation of metallic plates under hypervelocity impact at the University of Nevada, Las Vegas (UNLV) Center for Materials and Structures using a two-stage light gas gun. In these experiments, cylindrical Lexan projectiles were fired at A36 steel target plates with velocities range of 4.5-6.0 km/s. Experiments were designed to produce a front side impact crater and a permanent bulging deformation on the back surface of the target without inducing complete perforation of the plates. Free surface velocities from the back surface of target plate were measured using the newly developed Multiplexed Photonic Doppler Velocimetry (MPDV) system. To simulate the experiments, a Lagrangian-based smooth particle hydrodynamics (SPH) is typically used to avoid the problems associated with mesh instability. Despite their intrinsic capability for simulation of violent impacts, particle methods have a few drawbacks that may considerably affect their accuracy and performance including, lack of interpolation completeness, tensile instability, and existence of spurious pressure. Moreover, computational time is also a strong limitation that often necessitates the use of reduced 2D axisymmetric models. To address these shortcomings, IMPETUS Afea Solver® implemented a newly developed SPH formulation that can solve the problems regarding spurious pressures and tensile instability. The algorithm takes full advantage of GPU Technology for parallelization of the computation and opens the door for running large 3D models (20,000,000 particles). The combination of accurate algorithms and drastically reduced computation time now makes it possible to run a high fidelity hypervelocity impact model.
机译:在内华达大学拉斯维加斯分校材料和结构中心,使用两阶段轻型气枪,进行了一系列实验以研究金属板在超高速冲击下的塑性变形。在这些实验中,圆柱形Lexan射弹向A36钢靶板上发射,射速为4.5-6.0 km / s。实验被设计成在不引起板的完全穿孔的情况下在靶的后表面上产生正面冲击弹坑和永久的鼓胀变形。使用新开发的多路复用光子多普勒测速仪(MPDV)系统测量了靶板后表面的自由表面速度。为了模拟实验,通常使用基于拉格朗日的平滑粒子流体动力学(SPH)来避免与网格不稳定性相关的问题。尽管粒子方法具有模拟暴力影响的内在能力,但它们仍存在一些缺点,这些缺点可能会极大地影响其准确性和性能,包括缺少插值完整性,拉伸不稳定性以及存在虚假压力。此外,计算时间也是一个强大的限制,通常需要使用简化的2D轴对称模型。为了解决这些缺点,IMPETUS AfeaSolver®实施了新开发的SPH配方,可以解决有关杂散压力和拉伸不稳定性的问题。该算法充分利用GPU技术进行计算并行化,为运行大型3D模型(20,000,000个粒子)打开了大门。精确算法和大大减少的计算时间的结合现在使运行高保真超高速冲击模型成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号