首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >MULTISCALE INVESTIGATION OF STRAIN ENERGY DENSITY FOR FATIGUE LIFE PREDICTION
【24h】

MULTISCALE INVESTIGATION OF STRAIN ENERGY DENSITY FOR FATIGUE LIFE PREDICTION

机译:疲劳寿命预测的应变能密度多尺度研究

获取原文

摘要

A fatigue life prediction method using strain energy density as a prediction parameter has had success predicting the lifetimes greater than 10~5 cycles for room and elevated temperatures under axial, bending, and shear loading for different material systems. This method uses monotonic strain energy density determined at the macroscale as a damage parameter for fatigue, despite the differences in damage behavior of static and dynamic loading. Recent studies have brought this method into question, as cyclic energy for low cycle fatigue loading has been found to be significantly greater. Amendments of the fatigue life model have addressed this discrepancy for continuum level measurements, but have yet to examine the localized effects of machined notches. This study investigates strain energy density for static and dynamic loading at cycle counts from one (monotonic) to 10~5 for plain and notched specimens, exposing the differences between damaging strain energy density at continuum and local length scales. Continuum level strain energy density is simply determined by using the load and strain feedback from a standard mechanical test procedure using a common extensometer and a servohydraulic load frame. Local strain energy density is determined more elaborately by using three methods. Localized energy is determined from compliance and a closed form relationship between stress intensity factor and strain energy density. The influence of the notch is considered in the stress intensity calculation, but its influence on stress concentration is disregarded. All calculations are based on the net section stress and linear elasticity is assumed. The analyses revealed two distinct groups, but one data set indicated coincidence with total accumulated strain energy density. These data also corroborate the theory that average strain energy density at the continuum level changes mechanisms governing damage evolution. Monotonic strain energy density is refuted as an appropriate damage parameter to predict fatigue lifetimes, and a statically equivalent strain energy density is proposed. An amended continuum level model is proposed, increasing prediction accuracy over fatigue lifetimes less than 10~6. Additionally, a localized model is proposed, expanding prediction capability to geometries with notch like features.
机译:使用应变能密度作为预测参数的疲劳寿命预测方法已经成功地预测了在室温和高温下,不同材料系统在室温和高温下的寿命大于10〜5个循环。尽管静态和动态载荷的损伤行为有所不同,但该方法仍使用在宏观尺度上确定的单调应变能密度作为疲劳的损伤参数。最近的研究使这种方法受到质疑,因为发现低循环疲劳载荷的循环能量明显更大。疲劳寿命模型的修正已经解决了连续水平测量的这种差异,但是还没有研究机械刻槽的局部影响。这项研究调查了在平整和有凹口的样本中,从一个(单调)到10〜5的循环计数,静态和动态载荷下的应变能密度,揭示了连续和局部长度尺度上破坏性应变能密度之间的差异。通过使用标准引伸计和伺服液压载荷框架通过标准机械测试程序获得的载荷和应变反馈,即可简单地确定连续水平应变能密度。使用三种方法可以更精确地确定局部应变能密度。根据柔度和应力强度因子与应变能密度之间的闭合形式关系来确定局部能量。在应力强度计算中考虑了缺口的影响,但忽略了其对应力集中的影响。所有计算均基于净截面应力,并假定为线性弹性。分析揭示了两个不同的组,但是一个数据集表明与总累积应变能密度一致。这些数据也证实了在连续水平上平均应变能密度改变控制损伤演化的机理的理论。驳斥单调应变能密度作为预测疲劳寿命的合适损伤参数,并提出了静态等效应变能密度。提出了一种修正的连续体水平模型,在疲劳寿命小于10〜6的情况下提高了预测精度。另外,提出了一种局部化模型,将预测能力扩展到具有类似缺口特征的几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号