首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >NUMERICAL COMBUSTION AND HEAT TRANSFER SIMULATIONS AND VALIDATION FOR A HYDROGEN FUELED 'MICROMIX' TEST COMBUSTOR IN INDUSTRIAL GAS TURBINE APPLICATIONS
【24h】

NUMERICAL COMBUSTION AND HEAT TRANSFER SIMULATIONS AND VALIDATION FOR A HYDROGEN FUELED 'MICROMIX' TEST COMBUSTOR IN INDUSTRIAL GAS TURBINE APPLICATIONS

机译:氢燃料“微型”试验燃烧器在工业燃气轮机中的数值燃烧与传热模拟及验证

获取原文

摘要

Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation once it can be combined with the use of renewable energy sources for its production. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NO_x (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers great potential to burn hydrogen in gas turbines at very low NO_x emissions. The mixing of hydrogen and air is based on the jet in cross-flow (JICF) principle, where the gaseous fuel is injected perpendicular into the crossing air stream. The reaction takes place in multiple miniaturized diffusion flames with an inherent safety against flashback and the potential of low NO_x emissions due to a short residence time of the reactants in the flame region. Aiming to further develop an existing burner design in terms of an increased energy density, a redesign is required in order to stabilize the flames at higher mass flows while maintaining low emission levels. For this reason, a systematic numerical analysis using CFD is carried out, to identify the interactions of combustion, radiation and heat conduction in the adjacent burner wall by conjugate heat transfer (CHT) methods. Different combustion models are applied, starting from a hybrid eddy break-up model to more advanced turbulence-chemistry interaction approaches considering detailed chemical mechanisms. Those allow an improved prediction of the different NO-pathways of production and consumption. The results of the simulations are in good agreement with atmospheric test rig data of optical flame structure, measured combustor surface temperatures and NO_x emissions. The numerical methods help reducing the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NO_x emissions in a wider operating condition field. Further on, the more detailed CFD-simulations support the understanding of decisive mechanisms to reduce the numerical work to the most important models for further industrial applications in future.
机译:氢气可以与可再生能源结合用于生产,是未来低排放发电的一种可能的替代燃气轮机燃料。由于与其他燃料(例如天然气)相比其物理特性不同,因此完善的燃气轮机燃烧系统无法直接应用于低NO_x(DLN)低氢燃烧。这使得开发新的燃烧技术成为氢燃料燃气轮机未来必不可少的挑战性任务。新开发并经过成功测试的“ DLN Micromix”燃烧技术具有巨大的潜力,可以以非常低的NO_x排放量在燃气轮机中燃烧氢气。氢气和空气的混合基于交叉流(JICF)原理,其中气态燃料垂直喷射到交叉气流中。该反应在多个小型扩散火焰中进行,具有固有的安全性,可防止反燃,并由于反应物在火焰区域的停留时间短而具有低NO_x排放的潜力。为了进一步提高能量密度,发展现有的燃烧器设计,需要进行重新设计,以便在较高的质量流量下稳定火焰,同时保持较低的排放水平。因此,使用CFD进行了系统的数值分析,以通过共轭传热(CHT)方法确定相邻燃烧器壁中燃烧,辐射和热传导的相互作用。应用了不同的燃烧模型,从混合涡流分解模型到考虑详细化学机理的更高级的湍流-化学相互作用方法。这些可以更好地预测生产和消费的不同NO途径。模拟结果与光学火焰结构的大气测试台数据,测量的燃烧室表面温度和NO_x排放高度吻合。数值方法有助于减少制造和测试工作量,减少用于单个验证活动的设计,以确认火焰稳定性和NO_x排放量在更宽的工作条件范围内。进一步地,更详细的CFD模拟支持对决定性机制的理解,该决定性机制可将数值工作简化为最重要的模型,以备将来在工业中应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号