首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >PREDICTING THERMOACOUSTIC INSTABILITY IN AN INDUSTRIAL GAS TURBINE COMBUSTOR: COMBINING A LOW ORDER NETWORK MODEL WITH FLAME LES
【24h】

PREDICTING THERMOACOUSTIC INSTABILITY IN AN INDUSTRIAL GAS TURBINE COMBUSTOR: COMBINING A LOW ORDER NETWORK MODEL WITH FLAME LES

机译:预测工业燃气轮机燃烧器的热声不稳定性:将低阶网络模型与火焰燃烧相结合

获取原文

摘要

The thermoacoustic modes of a full scale industrial gas turbine combustor have been predicted numerically. The predictive approach combines low order network modelling of the acoustic waves in a simplified geometry, with a weakly nonlinear flame describing function, obtained from incompressible large eddy simulations of the flame region under upstream forced velocity perturbations, incorporating reduced chemistry mechanisms. Two incompressible solvers, each employing different numbers of reduced chemistry mechanism steps, are used to simulate the turbulent reacting flowfield to predict the flame describing functions. The predictions differ slightly between reduced chemistry approximations, indicating the need for more involved chemistry. These are then incorporated into a low order thermoacoustic solver to predict thermoacoustic modes. For the combustor operating at two different pressures, most thermoacoustic modes are predicted to be stable, in agreement with the experiments. The predicted modal frequencies are in good agreement with the measurements, although some mismatches in the predicted modal growth rates and hence modal stabilities are observed. Overall, these findings lend confidence in this coupled approach for real industrial gas turbine combustors.
机译:数值工业燃气轮机燃烧室的热声模式已被数值预测。这种预测方法将声波的低阶网络建模与简化的几何形状结合在一起,并具有弱非线性火焰描述功能​​,该功能是通过在上游强制速度扰动下对火焰区域进行不可压缩的大涡模拟而获得的,并结合了简化的化学机制。使用两个不可压缩的求解器,每个求解器使用不同数量的还原化学机理步骤,以模拟湍流反应流场以预测火焰描述功能​​。在降低的化学近似值之间的预测略有不同,这表明需要更多的化学成分。然后将它们合并到低阶热声求解器中,以预测热声模式。对于在两个不同压力下运行的燃烧器,与实验一致,大多数热声模式被预测为稳定的。预测的模态频率与测量值非常吻合,尽管观察到的模态增长率和模态稳定性存在一些不匹配。总体而言,这些发现使人们对这种用于实际工业燃气轮机燃烧器的耦合方法充满信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号