首页> 外文会议>American Society for Composites technical conference;American Society for Composites >MD-CF: A Molecular Model to Predict the Structure and Properties of PAN Based Carbon Fibers
【24h】

MD-CF: A Molecular Model to Predict the Structure and Properties of PAN Based Carbon Fibers

机译:MD-CF:预测PAN基碳纤维结构和性能的分子模型

获取原文

摘要

Carbon fibers (CFs) are increasingly the reinforcement of choice for many highperformancecomposites, due to their high stiffness and strength, combined with theirlow density. However, while commercial fibers can approach the modulus of idealgraphite, high-strength fibers achieve no more than 10% of the ideal strength. Strengthis limited by the presence of defects in the CF and thus, the development of highstrengthfibers requires establishing relationships between processing, microstructureand properties. To contribute to the development of this knowledge base, wedeveloped a molecular model, MD-CF, that uses a combination of kinetic MonteCarlo (kMC) and molecular dynamics (MD) to simulate the processes of carbonizationand graphitization of PAN-based CFs; importantly, the molecular-level simulationpredicts the development of microstructure during processing.The MD-CF method has been used previously to capture the cross-sectionalmicrostructure and stiffness of carbon fibers and was shown to generate structureswith experimentally observed features such as hairpins and graphitic sheets. In thispaper, we extend this model to three dimensions to capture the fiber microstructurealong the fiber axis, a key step towards the prediction of longitudinal modulus andstrength. The model starts with ladder-like molecular chains that are broadly acceptedto be the result of the stabilization of PAN precursors and uses kMC to describe thechemical reactions leading to the formation of graphitic sheets, and MD to describethe relaxation of the system during the process of cure. We find that the density ofsimulated structures ranges from 1.55 to 1.70 g/cc and is in excellent agreement withcommercial PAN-based fibers. In addition, the predicted longitudinal moduli are inreasonable agreement with recent experiments. However, the transverse compressivemoduli are an order of magnitude higher than experimental values, as a result ofcrosslinking in the transverse direction, preventing sliding between graphitic sheets.
机译:碳纤维(CF)越来越多地成为许多高性能的首选增强材料 复合材料,由于其高刚度和强度,以及它们的结合 低密度。但是,尽管商用纤维可以达到理想的模量 石墨,高强度纤维达到不超过理想强度的10%。力量 由于CF中存在缺陷而受到限制,因此,高强度的发展 纤维需要在加工,微观结构之间建立联系 和属性。为促进该知识库的发展,我们 开发了分子模型MD-CF,该模型结合了动力学Monte Carlo(kMC)和分子动力学(MD)模拟碳化过程 基于PAN的CF的石墨化;重要的是,分子水平的模拟 预测加工过程中微观结构的发展。 以前曾使用MD-CF方法捕获横截面 碳纤维的微观结构和刚度,并被证明会产生结构 具有实验观察到的特征,例如发夹和石墨片。在这个 在论文中,我们将此模型扩展到三个维度以捕获纤维的微观结构 沿纤维轴方向,是预测纵向模量和 力量。该模型从被广泛接受的阶梯状分子链开始 是PAN前体稳定化的结果,并使用kMC来描述 导致石墨薄片形成的化学反应,用MD来描述 固化过程中系统的松弛。我们发现 模拟结构的范围为1.55至1.70 g / cc,并且与 商业PAN基纤维。另外,预测的纵向模量在 与最近的实验有合理的一致性。但是,横向压缩 结果是,模量比实验值高一个数量级。 横向交联,防止石墨片之间滑动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号