首页> 外文会议>Guideline on air quality models >Pseudo-Source Parameters for Flare Stacks
【24h】

Pseudo-Source Parameters for Flare Stacks

机译:火炬烟囱的伪源参数

获取原文

摘要

Although the regulatory air dispersion model AERMOD is now run on computers that were once equivalent to super-computers, many basic input components have retained the roots of simplified models and their implied assumptions. Perhaps one of the most influential components of the air dispersion model to ground-level concentration predictions is the calculation of plume rise. This paper derives the plume buoyancy flux in terms of combustion variables readily known or calculated without simplifying assumptions so that the fundamental theory can be used for hot plumes from flares burning gas of varying composition. Prediction sensitivity to flared gas and ambient temperature are now correctly handled by a new equation. The flare pseudo-parameters are based on both the buoyancy and momentum flux, thus conserving momentum rather than arbitrarily assigning the flare a velocity and thus a momentum flux. The plume buoyancy flux increases compared to the classic simplified approach, but reduces to the existing US EPA approach when the simplifying assumptions of the plume having the same molar mass and specific heat of the ambient air are made. An approach is demonstrated to calculate pseudo-source parameters for elevated flares during varying meteorological conditions and is compared to the US EPA approach. The effective stack height for a flare allows for combustion as the flared gas exits the tip. Instead of a single source for all meteorological conditions, multiple co-located sources with varying effective stack height and diameter are used. AERMOD is run with NOSTD option as flare stack tip downwash is accounted for in the effective stack heights rather than the AERMOD model calculating the downwash incorrectly using the pseudo-source parameters. The modelling approaches are compared for an example flare. Maximum ground level predictions change, generally increasing near the source and decreasing further away, with the new flare pseudo-source parameters and the dispersion conditions the maximums occur under change.
机译:尽管管制空气扩散模型AERMOD现在在曾经与超级计算机等效的计算机上运行,​​但许多基本输入组件保留了简化模型及其隐含假设的根源。空气扩散模型对地面浓度预测的最有影响力的组成部分之一可能是羽状上升的计算。本文根据已知的或不经简化假设即可计算出的燃烧变量推导出羽流浮力通量,因此该基本理论可用于燃烧各种成分的火炬产生的热羽流。现在,可以通过新公式正确处理对火炬气和环境温度的预测敏感性。耀斑伪参数基于浮力和动量通量,因此保留了动量,而不是任意给耀斑分配速度和动量通量。与经典的简化方法相比,羽流的浮力通量增加了,但是在做出具有相同摩尔质量和环境空气比热的羽流的简化假设时,羽流的浮力通量却降低到现有的US EPA方法。演示了一种方法,该方法可以在变化的气象条件下计算高火炬的伪源参数,并将其与美国EPA的方法进行比较。火炬的有效烟囱高度可在火炬气离开烟头时燃烧。代替所有气象条件的单一来源,而是使用具有不同有效烟囱高度和直径的多个并置来源。 AERMOD与NOSTD选项一起运行,因为火炬烟囱尖端向下冲洗是在有效烟囱高度中考虑的,而不是AERMOD模型使用伪源参数错误地计算了向下冲洗。比较了示例火炬的建模方法。随着新的耀斑伪源参数和色散条件的出现,最大地面预测值会发生变化,通常在震源附近增加,而在震源附近逐渐减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号