首页> 外文会议>ASME conference on smart materials, adaptive structures and intelligent systems >CONSTRAINT TUNING OF LIGHTWEIGHT ELASTOMERIC METAMATERIALS FOR STRUCTURAL IMPACT TOLERANCE
【24h】

CONSTRAINT TUNING OF LIGHTWEIGHT ELASTOMERIC METAMATERIALS FOR STRUCTURAL IMPACT TOLERANCE

机译:轻质弹性材料的抗冲击性结构调整

获取原文

摘要

To alleviate wave and vibration transmission in automotive, aerospace, and civil engineering fields, researchers have investigated periodic metamaterials with especially architected internal topologies. Yet, these solutions employ heavy materials and narrowband, resonant phenomena that are unsuitable for the many applications where broadband frequency vibration energy is a concern, such as that injected by impact forces, and weight is a performance penalty. To overcome these limitations, a new idea for lightweight, elastomeric metamaterials constrained near critical points is recently being explored, such that improved shock and vibration damping is achieved using reduced mass than conventional periodic metamaterials. On the other hand, the internal architectures of these metamaterials have not been explored beyond classical circular designs whereas numerous engineering structures involve square or rectangular geometries that may challenge the ability to realize critical point constraints due to the lack of rotational symmetry. The objectives of this research are to undertake a first study of square cross-section elastomeric metamaterials and to assess the impact tolerance of structures into which these metamaterials are embedded and constrained. Finite element simulations guide attention to design parameters for the metamaterial architectures, while experimental efforts quantify the advantages of constraints on enhancing impact tolerance metrics for engineering structures. It is seen that although the architected metamaterial leads to slightly greater instantaneous acceleration amplitude immediately after impact, it more rapidly attenuates the injected energy when compared to the solid and heavier elastomer mass from which the metamaterial is derived.
机译:为了减轻汽车,航空航天和土木工程领域中的波和振动传递,研究人员研究了具有特殊内部拓扑结构的周期性超材料。然而,这些解决方案采用了重材料和窄带共振现象,不适用于许多需要考虑宽带频率振动能量的应用,例如冲击力注入的应用,而重量则是性能的损失。为了克服这些局限性,最近正在探索一种在临界点附近受约束的轻质弹性超材料的新想法,这样,与传统的周期性超材料相比,使用减轻的质量就可以实现更好的冲击和振动阻尼。另一方面,除了经典的圆形设计外,还没有探索这些超材料的内部结构,而许多工程结构涉及方形或矩形几何形状,由于缺乏旋转对称性,这些几何形状可能会挑战实现临界点约束的能力。这项研究的目的是对方形截面的弹性超材料进行首次研究,并评估嵌入和约束这些超材料的结构的耐冲击性。有限元模拟引导人们注意超材料结构的设计参数,而实验工作则量化了在增强工程结构的耐冲击性指标方面的约束优势。可以看出,尽管所构造的超材料在撞击后立即导致稍大的瞬时加速度振幅,但与衍生超材料的固体和较重的弹性体质量相比,它更迅速地衰减了注入的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号