首页> 外文会议>ASME conference on smart materials, adaptive structures and intelligent systems >THERMODYNAMIC ANALYSIS OF A DIRECT MECHANICAL TO ELECTRICAL ENERGY HARVESTING CYCLE IN FERROELECTRIC CRYSTALS
【24h】

THERMODYNAMIC ANALYSIS OF A DIRECT MECHANICAL TO ELECTRICAL ENERGY HARVESTING CYCLE IN FERROELECTRIC CRYSTALS

机译:铁电晶体中直接机械-电能收集循环的热力学分析

获取原文

摘要

Field induced phase transformations in ferroelectric crystals occur when the applied electrical or mechanical load exceeds a certain threshold. Mechanical cycling about these transformation field thresholds under varying open and closed circuit conditions has been shown to yield a near ideal mechanical to electrical energy harvesting technique. Numerical integration of experimentally measured stress -strain and electric field - electric displacement data has shown mechanical to electrical energy conversion efficiency near 60% for 0.24PIN-0.44PMN-0.32PT. In this work, the total irreversible energy is determined by the offset between the forward and reverse loading paths, equivalent to the hysteresis in the phase transformation behavior. This is equal to the available mechanical energy for conversion to electrical energy for harvesting. Following the ideal mechanical to electrical energy harvesting procedure, the total possible energy harvested is a direct function of the hysteresis area in the phase transformation and the electromechanical coupling factor. Efficiency is predicted to be equal to the electromechanical coupling factor, 0.596 (59.6%). Predicted results agree with experimental data from numerical integration. Energy densities are calculated up to 5 kJ/m~3 with potential power densities of 10~2-10~3 kW/m~3.
机译:当施加的电或机械负载超过某个阈值时,铁电晶体中会发生场感应相变。已经证明,在变化的开路和闭路条件下,围绕这些变换场阈值的机械循环可产生接近理想的机械至电能收集技术。实验测量的应力-应变和电场-电位移数据的数值积分表明,对于0.24PIN-0.44PMN-0.32PT,机械能到电能的转换效率接近60%。在这项工作中,总的不可逆能量由正向和反向加载路径之间的偏移确定,等效于相变行为中的磁滞。这等于用于转换为收获的电能的可用机械能。遵循理想的机械到电能收集程序,收集的总可能能量是相变中的磁滞面积和机电耦合因子的直接函数。效率预计将等于机电耦合系数0.596(59.6%)。预测结果与数值积分的实验数据吻合。计算出的能量密度高达5 kJ / m〜3,潜在的功率密度为10〜2-10〜3 kW / m〜3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号