首页> 外文会议>ASME Fluids Engineering Division summer meeting >DESIGN STUDY OF A PYROLYSIS PLANT COMPRESSOR WITH HEAVY WALL EROSION FROM METAL PARTICLE IMPACT
【24h】

DESIGN STUDY OF A PYROLYSIS PLANT COMPRESSOR WITH HEAVY WALL EROSION FROM METAL PARTICLE IMPACT

机译:金属颗粒撞击壁厚腐蚀热解装置压缩机的设计研究

获取原文

摘要

In a pyrolysis plant, a mounted centrifugal compressor takes heavy damage because of erosion originating from metal particle mixed with the inlet air flow impacting its blades and volute walls. In a first step, the original impeller design as well as other centrifugal compressor designs are studied to identify the design parameters which influence the erosion distribution, shape and magnitude. It has been concluded that the first impact plays an important role in defining the particles trajectories and the erosion on the walls. A novel impeller design method based on particle trajectories after a controlled first impact is introduced. The new setup is simulated via CFD coupled with Finnie erosion model to assess the damage. This design is improved in a further step. Adequate simulation setups such as interfaces, boundary conditions and particle coupling methods with carrier fluid are introduced. This study focuses on predicting the particle trajectory within the impeller to reduce the impacts on blade walls and thus reducing the erosion rate. For all designs, the analysis is conducted in the same stage operating point, this point is defined at a predefined volume flow VF [kg/m~3] and total-to-static pressure Ap[Pa] as is recommended for the pyrolysis facility including the compressor. Simulations are conducted in a steady state with compressible air at high static temperature going to 530°C. For CFD calculations the software in use is CFX of the ANSYS Group. All mesh used is structured and produced by TurboGrid for the blade rows and with Icem for inlet, outlet and volute. The final compressor design contain the design recommendation for hub form and outlet flow angle.
机译:在热解工厂中,安装的离心式压缩机会受到严重破坏,这是由于金属颗粒与侵蚀其叶片和蜗壳壁的进气气流混合引起的腐蚀所致。第一步,研究原始叶轮设计以及其他离心压缩机设计,以识别影响腐蚀分布,形状和大小的设计参数。已经得出的结论是,第一次撞击在确定粒子的轨迹和对壁的侵蚀方面起着重要的作用。介绍了一种基于粒子轨迹的可控首次撞击后的新型叶轮设计方法。通过CFD和Finnie侵蚀模型对新设置进行了仿真,以评估损坏程度。进一步改进了该设计。介绍了足够的模拟设置,例如界面,边界条件和与载液的颗粒耦合方法。这项研究的重点是预测叶轮内的颗粒轨迹,以减少对叶片壁的影响,从而降低腐蚀速率。对于所有设计,分析都是在同一阶段的操作点上进行的,该点被定义为热解设施推荐的预定义体积流量VF [kg / m〜3]和总静压Ap [Pa]包括压缩机。在稳态下进行模拟,可压缩空气在高达530°​​C的高静态温度下进行。对于CFD计算,使用的软件是ANSYS Group的CFX。所有使用的网格都是由TurboGrid构造和生产的,用于叶片行,而Icem用于入口,出口和蜗壳。最终的压缩机设计包含轮毂形状和出口流角的设计建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号