首页> 外文会议>ASME Pressure Vessels and Piping conference >INCORPORATING PEENING INTO ASME SECTION Ⅺ CODE CASES N-729 AND N-770 FOR PWSCC MITIGATION IN ALLOY 82/182/600 LOCATIONS
【24h】

INCORPORATING PEENING INTO ASME SECTION Ⅺ CODE CASES N-729 AND N-770 FOR PWSCC MITIGATION IN ALLOY 82/182/600 LOCATIONS

机译:纳入ASME部分ALL代码案例N-729和N-770,用于合金82/182/600地点的PWSCC缓解

获取原文

摘要

This paper will discuss the ASME Code Committee activities involved in the incorporation of surface stress improvement (SSI) into ASME Code Cases N-770-4 and N-729-5. ASME Code Cases N-770 [1] and N-770-1 introduced several mitigation approaches for dissimilar metal weld (DMW) locations in PWR primary system piping and provided inspection relief for locations that were mitigated. The initial approaches contained in N-770 and N-770-1 included mechanical stress improvement and weld overlay methods that have a global stress relief effect to achieve a very low tensile surface stress state or a compressive stress state at the weld inside surface to halt crack initiation, as well as growth of acceptably sized cracks. The weld overlay mitigation methods are also effective because they introduce PWSCC-resistant material, i.e., Alloys 52, 152, or their variants. (The initial approaches also included Alloy 52/152 weld inlay and weld onlay, methods that do not require stress improvement but do require access to the weld inside surface.) While the mechanical stress improvement and weld overlay methods address the majority of the DMW locations in the primary piping system, there are locations that cannot be treated by these approaches due to the weld geometry or access limitations for the needed equipment. Additionally the dissimilar metal J-groove welds in the reactor pressure vessel head penetration nozzles (RPVHPN) could not be addressed at all by the approaches developed for DMW locations. To address the industry need to mitigate the unfavorable DMW geometries and locations along with the RPVHPN locations, the use of surface stress improvement (SSI) was studied and documented in EPRI reports Materials Reliability Program (MRP) -267 [2], "Technical Basis for Primary Water Stress Corrosion Cracking by Surface Stress Improvement," and MRP-335 [3], "Topical Report for Primary Water Stress Corrosion Cracking by Surface Stress Improvement." These reports formed the technical basis for the SSI-related changes made in Code Cases N-770-4 and N-729-5. Along with the technical bases noted, support from the international community in terms of operational experience with SSI in their power plants was invaluable in providing the necessary understanding, context, and confidence to committee members. The ASME "Task Group High Strength Nickel Alloy Issues" (TGHSNAI) was assigned the task of revising the existing Code Cases, N-770 [1], "Alternate Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated With UNS N06082 or UNS W86182 Weld Filler Material With or Without Application of Listed Mitigation Activities" and N-729 [4], "Alternate Examination Requirements for PWR Reactor Vessel Upper Heads With Nozzles Having Pressure-Retaining Partial-Penetration Welds." To incorporate the SSI approach into these Code Cases, the first action was to determine whether the SSI process was considered to be a peening process as defined by ASME Section Ⅲ NB-4422 criteria. This required the submittal of an Interpretation of NB-4422 to determine if SSI techniques were considered a peening process under ASME Section Ⅲ. The interpretation (Interpretation Ⅲ-1-13-03), documented in ASME File 12-1192 [5], specified that SSI was not considered peening by Section Ⅲ. This interpretation provided the framework by which SSI could be directly applied to ASME Section Ⅺ inspection criteria without the need to first revise ASME Section Ⅲ NB-4422. SSI (peening) was first incorporated into Code Case N-770 [1] to provide a mitigation alternative for locations unable to be addressed by the methods addressed thus far. The revision to Code Case N-770 [1] does not provide guidance for the application of SSI activities but rather, it provides the process performance criteria and the inspection guidance following the application of SSI and establishes the pre-application inspection acceptance criteria. Following the approval of SSI in Code Case N-770 [1] addressing the DMW in the primary coolant piping system, the SSI approach was applied to the partial penetration dissimilar metal J-groove welds in RPVHPNs in Code Case N-729 [4]. The application to RPVHPNs provides the industry with a valuable asset preservation tool while significantly lowering the safety risks associated with primary water stress corrosion cracking (PWSCC) and degradation from borated water leakage for the RPVHPNs.
机译:本文将讨论ASME规范委员会在将表面应力改善(SSI)纳入ASME规范案例N-770-4和N-729-5中所涉及的活动。 ASME案例N-770 [1]和N-770-1针对PWR初级系统管道中的异种金属焊接(DMW)位置引入了几种缓解方法,并为缓解的位置提供了检查缓解措施。 N-770和N-770-1中包含的初始方法包括机械应力改善和焊缝覆盖方法,这些方法具有全局应力释放效果,可以在焊缝内表面达到极低的拉伸表面应力状态或压应力状态,从而停止裂纹萌生以及可接受大小的裂纹的增长。减轻焊缝覆盖的方法也是有效的,因为它们引入了耐PWSCC的材料,即52、152合金或它们的变体。 (最初的方法还包括合金52/152焊缝镶嵌和焊缝镶嵌,这些方法不需要改善应力,但确实需要进入焊缝内表面。)虽然机械应力改善和焊缝覆盖方法可解决大多数DMW位置在主要管道系统中,由于焊接几何形状或所需设备的访问限制,这些方法无法处理某些位置。另外,为DMW位置开发的方法根本无法解决反应堆压力容器头部穿透喷嘴(RPVHPN)中的异种金属J型槽焊缝。为了满足行业缓解DMW几何形状和位置以及RPVHPN位置的需求,对表面应力改进(SSI)的使用进行了研究,并记录在EPRI报告材料可靠性计划(MRP)-267 [2]中,“技术基础”。 “通过改善表面应力改善一次水应力腐蚀开裂”,和MRP-335 [3],“通过改善表面应力改善一次水应力腐蚀开裂的专题报告”。这些报告构成了代码案例N-770-4和N-729-5中与SSI相关的更改的技术基础。除已指出的技术基础外,国际社会在其电厂中使用SSI的操作经验方面的支持对于为委员会成员提供必要的理解,背景和信心也非常宝贵。 ASME“任务组高强度镍合金问题”(TGHSNAI)的任务是修订现有规范案例N-770 [1],“制造的1类PWR管道和容器喷嘴对接焊缝的替代检验要求和验收标准”使用UNS N06082或UNS W86182焊缝填充材料,无论是否应用列出的减缓措施”和N-729 [4],“带有喷嘴的PWR反应堆容器上盖的替代检验要求,该喷嘴具有保压部分渗透焊接。”为了将SSI方法整合到这些规范案例中,第一步是确定SSI过程是否被视为ASME第Ⅲ部分NB-4422标准所定义的喷丸过程。这要求提交NB-4422解释,以确定SSI技术是否被认为是ASME第三节规定的喷丸处理过程。 ASME文件12-1192 [5]中记录的解释(解释Ⅲ-1-13-03)规定,第Ⅲ节不将SSI视为喷丸处理。这种解释提供了将SSI直接应用于ASME SectionⅪ检查标准的框架,而无需先修改ASME SectionⅢNB-4422。 SSI(强化)首先被合并到Code Case N-770 [1]中,以为迄今为止无法解决的方法提供解决方案。代码案例N-770 [1]的修订版不提供有关SSI活动应用的指南,而是提供了应用SSI后的过程性能标准和检查指南,并建立了应用前检查接受标准。遵循规范案例N-770 [1]中的SSI批准解决了主冷却剂管道系统中的DMW之后,在规范案例N-729 [4]中,SSI方法被应用于RPVHPN中的部分渗透异种金属J型坡口焊缝。 RPVHPN的应用为行业提供了一种有价值的资产保存工具,同时显着降低了与RPVHPN的一次水应力腐蚀开裂(PWSCC)和因硼酸化水泄漏引起的降解相关的安全风险。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号