首页> 外文会议>ASME Pressure Vessels and Piping conference >A PROPOSAL TO CONSIDER CYCLE COUNTING METHODS FOR FATIGUE ANALYSIS OF NUCLEAR AND CONVENTIONAL POWER PLANT COMPONENTS
【24h】

A PROPOSAL TO CONSIDER CYCLE COUNTING METHODS FOR FATIGUE ANALYSIS OF NUCLEAR AND CONVENTIONAL POWER PLANT COMPONENTS

机译:核和常规电站组件疲劳分析中考虑周期计数方法的建议

获取原文

摘要

This paper points out some relevant aspects of the simplified elasto-plastic fatigue analysis as addressed in the ASME Code Section Ⅲ Subsection NB and its application to two structural components that are subjected to a slow or to a fast thermal transient. The structural components considered are a thick-walled pipe and a nozzle-to-vessel junction. For the case of the thick-walled pipe, a closed form analytical solution proposed by Albrecht for pipes subjected transient temperature loading was implemented and its results were compared to coupled thermal and mechanical finite element analyses using a commercial finite element software. The application of the analytical solution allows for an optimization of the time consumed to obtain the stresses that occur across the thickness of the pipe as a function of time, i.e. the membrane plus bending plus peak stress range, S_p. The analytical solution equally allows for the linearization of the stress components actuating along the pipe thickness for all time steps considered within the thermal stress solution. This yields the membrane plus bending stress range, S_n, and allows for a design code conforming plasticity correction by means of K_e factors. In the considered case of the nozzle-to-vessel junction, a finite element solution was used. It was one aim of the study to point out, that under fast transients loading situations the relevant stresses S_p and S_n do not necessarily coincide with each other. In the ASME Code the alternating stress S_a is a function of the factor K_e and of the range of S_p, with K_e being a function of the range of S_n and of the material properties. Consequently, a non-conservative fatigue analysis may result in the case of performing cycle counting only based on the time history of the critical S_p values and simply assigning the corresponding S_n and K_e values. This paper exemplifies one of those cases and proposes a method to overcome this problem.
机译:本文指出了一些相关方面的简化弹塑性疲劳分析,如ASME代码部分Ⅲ款,其应用于两个结构部件,这些组件受到缓慢或快速的热瞬态。考虑的结构部件是厚壁管和喷嘴到容器结。对于厚壁管道的情况,实施了由Albrecht提出的用于管道受到的瞬态温度负荷的闭合形式的分析解决方案,并使用商业有限元软件将其结果与耦合热和机械有限元分析进行比较。分析解决方案的应用允许优化消耗的时间,以获得在管道厚度上发生的应力,即时间,即膜加弯曲加峰应力范围,S_P。分析液同样允许沿着管厚度致动的应力分量的线性化,以便在热应力溶液内考虑的所有时间步骤。这产生膜加弯曲应力范围,S_N,并允许通过K_E因子符合可塑性校正的设计代码。在被认为是喷嘴到容器结的情况下,使用有限元溶液。这是研究的一个目的,指出,在快速瞬变下,加载情况,相关应力S_P和S_N不一定彼此重合。在ASME代码中,交流应力S_A是因子K_E的函数,并且S_P的范围,K_E是S_N和材料属性范围的函数。因此,不保守的疲劳分析可以产生仅基于关键S_P值的时间历史执行循环计数的情况,并且简单地分配相应的S_N和K_E值。本文举例说明了其中一个病例并提出了一种克服这个问题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号