首页> 外文会议>Electric Electronics, Computer Science, Biomedical Engineerings' Meeting >Optimization of the heart pump geometry based on multiple gradient descent algorithm
【24h】

Optimization of the heart pump geometry based on multiple gradient descent algorithm

机译:基于多重梯度下降算法的心脏泵几何优化

获取原文

摘要

Left ventricular assist devices (LVADs) have become one of the most effective treatment modalities for end-stage congestive heart failure, particularly where heart treatment becomes a limited option due to donor shortages. The development of local (national) technologies, therefore, emerges as a medical, technical, scientific, humanitarian and economic necessity. The mathematical models used for concept design and simulation of SVDP fluid dynamics contain highly non-linear, implicit partial differential equations which preclude an analytical solution. When these equations are solved using conventional computational tools, the time and resources consumed turn the concept design and simulation phase into the most costly step of SVDP R&D. In this study, we developed an algorithm and tested its potential as a quicker alternative to classical computational methods for determining the optimal pump geometry (design parameters: axial-flow turbine blade inlet angles and radii) based on given design specifications (performance parameters: Pump pressure head and back-flow). The algorithm operates on the principle of Multiple Gradient Descent. From a given set of Design Parameters, a Prediction Polynomial is created first which, in turn, generates (predicts) a set of Performance Parameters. Data from our previous geometric optimization studies (run with conventional numeric methods) were used as the source of one-to-one matching sets of Design-Performance Parameters. Matching sets were divided into two groups, one to be used for the purposes of training the algorithm (i.e. creating the Prediction Polynomial) and the other for estimating the predictive power of the polynomial. Training and predictive power estimation of the algorithm was realized using 8 and 34 matching data sets, respectively. The polynomial predicted pressure head and back-flow values of given geometries with 5.21% and 11.24% error, respectively; and the rate of change of these parameters with respect to unit change in design parameters was estimated with 3.22% and 7.51% error, respectively. We conclude that the algorithm can be trained to generate a polynomial, which can accurately predict performance parameters from any given set of design parameters. The prediction is realized with acceptable error compared to classical numeric methods and virtually at no cost (time and resources).
机译:左心室辅助装置(LVAD)已成为末期充血性心力衰竭的最有效治疗方式之一,尤其是在由于捐赠者短缺而使心脏治疗成为有限选择的情况下。因此,地方(国家)技术的发展成为医学,技术,科学,人道主义和经济的必需品。用于SVDP流体动力学的概念设计和仿真的数学模型包含高度非线性的,隐式的偏微分方程,无法使用解析解。当使用常规计算工具求解这些方程式时,所花费的时间和资源使概念设计和仿真阶段成为SVDP R&D的最昂贵的步骤。在这项研究中,我们开发了一种算法,并根据给定的设计规范(性能参数:泵)确定了最佳计算泵的几何形状(设计参数:轴流式涡轮机叶片入口角和半径)的经典计算方法的快速替代方法,并对其潜力进行了测试。压头和回流)。该算法根据多梯度下降原理进行操作。根据给定的一组设计参数,首先创建一个预测多项式,然后生成(预测)一组性能参数。我们以前的几何优化研究(使用常规数值方法运行)获得的数据被用作“设计性能参数”一对一匹配集的来源。匹配集分为两组,一组用于训练算法(即创建预测多项式),另一组用于估计多项式的预测能力。该算法的训练和预测能力估计分别使用8个和34个匹配数据集实现。给定几何的多项式预测压头和回流值分别具有5.21%和11.24%的误差;估计这些参数相对于设计参数单位变化的变化率,误差分别为3.22%和7.51%。我们得出的结论是,可以训练算法以生成多项式,该多项式可以根据任何给定的设计参数集准确地预测性能参数。与传统的数值方法相比,该预测以可接受的误差实现,并且几乎没有成本(时间和资源)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号