首页> 外文会议>IEEE International Conference on Computational Electromagnetics >Computational quantum electromagnetics: A future pathway for computational electromagnetics
【24h】

Computational quantum electromagnetics: A future pathway for computational electromagnetics

机译:计算量子电磁学:计算电磁学的未来之路

获取原文

摘要

First, we emphasize the importance of Maxwell's equations (1865) [1] which have withstood the test of length scales, special relativity (1905) [2], and quantum theory (1927) [3]. Moreover, a differential geometry description of Maxwell's equations (1945) [4] had inspired the Yang-Mills theory (1954) [5], also known as the generalized electromagnetic theory. Vacuum space consists of electron-positron (e-p) pairs that represent nothingness. But when an electromagnetic wave passes through vacuum, the e-p pairs are polarized to form simple harmonic oscillators. The propagation of electromagnetic waves through vacuum is due to the coupling of these simple harmonic oscillators [6]. Figure 1 shows the concept of coupled harmonic oscillators: As more oscillators are coupled together, more resonant frequencies are possible in the system. A continuum of coupled harmonic oscillator (a transmission line) has infinitely many resonant modes. A cavity is a 3D version of a 1D transmission line. The field in a cavity can be decomposed into sum of modes, each of which resonate like a LC tank circuit as shown in Figure 2. Since each of these modes behaves simply like a harmonic oscillator, it can be quantized. From this concept of coupled harmonic oscillators, the quantum Maxwell's equations are derived to be: ∇ × Ĥ(r, t) - ∂t D(r, t) = Ĵext(r, t), ∇ Ê(r, t) + ∂t B(r, t) = 0, (1) ∇ · D(r, t) = ρext(r, t), ∇ ·.B(r, t) = 0. (2) The Green's function technique applies when the quantum system is linear time invariant. Hence, past knowledge in computational electromagnetics can be invoked to arrive at these Green's functions. These quantum Maxwell's equations portend well for a better understanding of quantum effects that are observed in many branches of electromagnetics, as well as in quantum optics, quantum information, communication, computing, encryption and related fields. More details about this work can be found in [7-11]. Hence, the combination of computational electromagnetics with quantum theory is cogent for the development of computational quantum optics. In this talk, a new look at the quantization of electromagnetic field will be presented. Examples of field-atom interaction using semi-classical calculation as well as fully quantum calculation will be presented as shown in Figure 3. Connection with computational electromagnetics in these calculations will be pointed out. The use of computational electromagnetics for Casimir force calculation will also be illustrated.
机译:首先,我们强调麦克斯韦方程组(1865)[1]的重要性,该方程组经受了长度标尺,相对论(1905)[2]和量子理论(1927)[3]的考验。此外,麦克斯韦方程(1945)[4]的微分几何描述激发了杨-米尔斯理论(1954)[5],也被称为广义电磁理论。真空空间由代表虚无的电子-正电子(e-p)对组成。但是,当电磁波通过真空时,e-p对被极化以形成简单的谐波振荡器。电磁波通过真空的传播是由于这些简单的谐波振荡器的耦合[6]。图1显示了耦合谐波振荡器的概念:随着更多的振荡器耦合在一起,系统中可能会有更多的谐振频率。连续耦合谐振器(传输线)具有无限多个谐振模式。空腔是1D传输线的3D版本。腔中的场可以分解为多个模式之和,每个模式都像图2所示的LC储能电路一样谐振。由于这些模式中的每个模式都像谐波振荡器一样简单,因此可以对其进行量化。从耦合谐波振荡器的概念出发,得出麦克斯韦量子方程为:∇×Ĥ(r,t)-∂tD(r,t)=Ĵext(r,t),∇(r,t)+ ∂tB(r,t)= 0,(1)∇·D(r,t)=ρext(r,t),∇·.B(r,t)=0。(2)格林函数技术适用当量子系统是线性时不变的。因此,可以调用过去在计算电磁学方面的知识来获得这些格林函数。这些量子麦克斯韦方程组预示着可以更好地理解在电磁学的许多分支以及量子光学,量子信息,通信,计算,加密和相关领域中观察到的量子效应。有关这项工作的更多详细信息,请参见[7-11]。因此,计算电磁学与量子理论的结合对于计算量子光学的发展具有说服力。在本次演讲中,将介绍电磁场量化的新观点。如图3所示,将给出使用半经典计算以及完全量子计算进行场-原子相互作用的示例。将指出在这些计算中与计算电磁学的联系。也将说明在卡西米尔力计算中使用计算电磁学的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号