首页> 外文会议>IAEE international conference;International Association for Energy Economics >Estimation of global rebound effect caused by energy efficiency improvement
【24h】

Estimation of global rebound effect caused by energy efficiency improvement

机译:估算因能效提高而引起的全球反弹效应

获取原文

摘要

Rebound effect refers to the phenomenon that certain reduction in energy use and emissions expected from energy efficiency improvement is not realized due to various reasons such as price change, substitution between energy and non-energy consumption, and economic growth. The rebound effect is under researched at the global economic level although there are many studies at sectoral and regional level. This study offers an illustrative estimate of the global rebound effect based on a CGE model and expore key factors behind the rebound effect.The illustrative estimate shows that general energy efficiency improvement in economic activities other than energy production leads to limited reduction in energy use and related emissions in the long term due to considerable rebound effect at the global level. However, energy efficiency improvement markedly contributes to economic growth by inducing more inputs of non-energy resources, and reallocation of sectoral inputs of resources.To improve the global rebound effect estimate, we can consider investment costs and sector-specific technology of energy efficiency improvement. The CGE model can be validated by historical data to explore the rebound effect in the past decade. Based on the updated model specifications that capture historical economic development, we can design future scenarios to estimate better the global rebound effect.In this article, we use observed resource producitivity data to estimate yearly average energy efficiency changes by energy source and region (Wei and Liu 2016). This estimation is based on a time series data on value added and energy resources provided by the World Input-output Database 1995-2009 (WIOD, Timmer 2012). We aggregate the time series data of the 40 WIOD regions into 8 regions, i.e., United States, European Union, Japan, Russia, China, India, Brazil, and Rest of the World; and the 35 WIOD sectors into 11 sectors.The estimated yearly average energy efficiency changes are assumed to continue until 2040 in a CGE model GRACE (Aaheim and Rive 2005; Liu and Wei 2016), to produce a business-as-usual (BAU) scenario, where the regional GDP, primary fossil energy consumption, and electricity generation are calibrated roughly to that reported in the New Policies Scenario of World Energy Outlook 2015 (IEA 2015). We assume that the efficiency improvement of energy used by households follows the average of total production activities in a region.To study the impact of energy efficiency changes, we consider alternative energy efficiency scenarios, assuming the energy efficiency in 2040 is 10% higher than the BAU case for all non-energy sectors in all regions. To identify the role of induced labor and capital for the rebound effect, we assume the energy efficiency improvement in 2040 occurs “overnight” just after 2039 in three scenarios. In Scenario “FixLbyS” we force labor inputs by production sector are the same as that in the BAU case. In Scenario “FixLinR” we assume full employment and free allocation of labor inputs among production sectors. In Scenario “VarLinR” we assume the same wage rates as that in BAU and sufficient labor supply for all regions. These three scenarios can be considered as “short-term” since the energy efficiency improvement occurs in only one year when capital stock is not adjustable among production sectors. However, it might be more plausible to assume that the energy efficiency improvement is realized gradually over time. Hence, we consider a “LongTerm” scenario. The “LongTerm” scenario assumes that the energy efficiency increases smoothly from 2015 until 2040 when it becomes 10% higher than the BAU case for all non-energy sectors in all regions. In other words, the yearly energy efficiency in non-energy sectors is 0.38% higher than BAU from 2015 to 2040.Our results show very large rebound effect on energy use (70%) and related emissions (90%) in 2040 at the global level with regional and sectoral differences (Fig. 1). Important determinants, among others, are induced labor movement among economic activities and labor supply, and substitution elasticity between energy and nonenergygoods. The global rebound effect is still considerable even with a low substitution elasticity between energy andnonenergy goods. The effect of capital accumulation over time contributes marginally to the global rebound effect asit is utilized to promote economic growth by using energy input more efficiently.Global rebound effect on energy use and related emissions caused by energy efficiency improvement can beconsiderable in a period of several decades. Hence, energy efficiency improvement in the demand side can serve asan effective policy to promote the economic growth considerably, but probably cannot itself be an effective policy toreduce the global energy use and related emissions in the long term. To improve the global rebound effect estimate,we can further consider investment costs and sector-specific technology of energy efficiency improvement. The CGEmodel can be validated by historical data to explore the rebound effect in the past decade. Based on the updatedmodel specifications that capture historical economic development, we can design future scenarios to estimate betterthe global rebound effect.
机译:回弹效应是指由于各种原因(例如价格变化,能源与非能源消耗之间的替代以及经济增长)而无法实现能源效率改善带来的预期能源消耗和排放量的某些减少的现象。尽管在部门和地区层面进行了许多研究,但在全球经济层面仍在研究反弹效应。这项研究提供了基于CGE模型的全球反弹效应的示例性估计,并揭示了反弹效应背后的关键因素。 说明性估算显示,由于全球范围内相当大的反弹效应,从长远来看,经济活动中除能源生产以外的总体能效提高会导致有限的能源使用量减少和相关排放量减少。然而,提高能效通过吸引更多非能源资源投入和资源部门投入的重新分配,为经济增长做出了显着贡献。 为了提高对全球反弹效应的估计,我们可以考虑投资成本和提高能效的特定行业技术。可以通过历史数据验证CGE模型,以探索过去十年的反弹效应。基于反映历史经济发展的更新模型规范,我们可以设计未来方案以更好地估计全球反弹效应。 在本文中,我们使用观测到的资源生产率数据来估算按能源来源和地区划分的年平均能效变化(Wei and Liu 2016)。该估算基于1995-2009年世界投入产出数据库(WIOD,Timmer 2012)提供的有关增值和能源的时间序列数据。我们将40个WIOD地区的时间序列数据汇总为8个地区,即美国,欧盟,日本,俄罗斯,中国,印度,巴西和世界其他地区; 35个WIOD部门变成11个部门。 假设CGE模型GRACE(Aaheim和Rive 2005; Liu和Wei 2016)估计的年度平均能效变化将持续到2040年,以产生照常营业(BAU)的情景,其中区域GDP,主要化石能源消耗和发电量的校准大致与《 2015年世界能源展望新政策情景》(IEA 2015)中报告的相同。我们假设住户使用能源的效率提高遵循某​​个地区总生产活动的平均值。 为了研究能效变化的影响,我们考虑了替代能效方案,假设2040年所有地区所有非能源行业的能效比BAU情况高出10%。为了确定诱导劳动力和资本在反弹效应中的作用,我们假设2040年的能源效率提高发生在2039年之后的“隔夜”的三种情况中。在“ FixLbyS”方案中,我们强迫生产部门的劳动力投入与BAU情况相同。在“ FixLinR”方案中,我们假设生产部门之间有充分的就业机会和劳动力投入的自由分配。在“ VarLinR”方案中,我们假设工资率与BAU相同,并且为所有地区提供充足的劳动力。这三种情况可被视为“短期”情况,因为在生产部门之间无法调整资本存量的情况下,能源效率的改善仅在一年内发生。但是,假设随着时间的推移逐渐实现能源效率的提高可能更为合理。因此,我们考虑“长期”方案。 “长期”情景假设,从2015年到2040年,能源效率将平稳增长,届时所有地区所有非能源行业的能源效率将比BAU情况高出10%。换句话说,从2015年到2040年,非能源行业的年能源效率比BAU高0.38%。 我们的结果表明,在全球范围内,到2040年,对能源使用(70%)和相关排放(90%)的反弹作用非常大,并且存在区域和部门差异(图1)。重要的决定因素包括经济活动和劳动力供给之间的诱使劳动力流动,以及能源和非能源之间的替代弹性。 商品。即使能量和能量之间的替代弹性很低,全局反弹效果仍然相当可观。 非能源商品。随着时间的推移,资本积累的影响对全球反弹效应的贡献很小,因为 通过更有效地利用能源输入来促进经济增长。 能源效率提高可能会导致全球反弹对能源使用和相关排放的影响 在几十年中是相当可观的。因此,可以提高需求方的能效 一项有效地促进经济增长的有效政策,但它本身可能不是一项有效的政策, 长期减少全球能源使用量和相关排放量。改善全球反弹效应的估计, 我们可以进一步考虑投资成本和提高能效的特定行业技术。专家咨询小组 可以通过历史数据验证该模型,以探索过去十年的反弹效果。根据更新 捕捉历史经济发展的模型规范,我们可以设计未来方案以进行更好的估算 全球反弹效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号