首页> 外文会议>LWR fuel with enhanced safety and performance meeting >Studying fuel failure behaviour with a micromechanical approach
【24h】

Studying fuel failure behaviour with a micromechanical approach

机译:用微机械方法研究燃油失效行为

获取原文

摘要

Under Loss Of Coolant Accident (LOCA) conditions, the temperature evolution within the fuel pellets combined with a reduction of the cladding confinement can lead to fuel fragmentation. This phenomenon provides additional fission gas release, inducing a higher rod internal pressure and possibly an additional driving force to disperse the smallest fuel fragments out of the cladding when the cladding balloons and bursts. Experiments show that the pellets are fractured in many fragments, with size ranges varying from a few millimetres to a few microns. Usually the hypothesis used to explain fuel pellet fragmentation during transient, is grain cleavage induced by over pressurized fission gas bubbles, located at the grain boundary. This work focuses on the pellet rim, where bubbles density increases owing to a higher irradiation level. This area, called "High Burn-up Structure" (HBS), has a specific behaviour due to a microstructure reorganization composed of small grains about 100 nm compared to 10 μm for initial UO2 fuel. The aim of this study is to define a macroscopic fragmentation model based on a micro mechanical approach to have a better understanding of the fuel mechanical behaviour at lower scale. size and volume fraction of fragments. This paper introduces a stepwise micromechanical method. firstly, we detail how to model the HBS microstructure including pressurized porosities, based on experimental or numerical data and define a Representative Volume Element (RVE). Then we use 3D full field computations in order to determine crack snapshot. Elastic computations are performed to find the bubbles pressure level which is required to reach the cracks initiation threshold. Then nonlinear computations, using a failure local behavior law, are conducted to identify the failure snapshot The latters will be used as an input data of the homogenization ("macroscopic") model. This model is exposed in the last section.
机译:在冷却液事故(基因座)条件下,燃料颗粒内的温度展现与熔接限制的减少可以导致燃料碎片。这种现象提供了额外的裂变气体释放,诱导更高的杆内部压力,并且可能是当包层气球和突发时将最小的燃料片段分散在包层中的额外驱动力。实验表明,颗粒在许多碎片中裂缝,大小范围从几毫米到几微米不同。通常用于解释燃料颗粒碎片在瞬时燃料颗粒碎片的假设是通过在晶粒边界处的加压裂变气泡引起的晶粒切割。这项工作侧重于颗粒边缘,由于辐射水平较高的泡沫密度增加。该区域称为“高刻录结构”(HBS),具有特定的行为,由于初始UO2燃料的10μm,与大约100nm的小颗粒组成的微结构重新组成。本研究的目的是基于微型机械方法来定义一种宏观碎片模型,以更好地了解较低规模的燃料机械行为。片段的大小和体积分数。本文介绍了一种逐步微机械方法。首先,我们详细介绍了基于实验或数值数据的基于实验或数值数据来建模包括加压孔隙的HBS微观结构,并限定代表体积元素(RVE)。然后我们使用3D全场计算来确定破解快照。执行弹性计算以找到到达裂缝起始阈值所需的气泡压力水平。然后,使用故障本地行为定律进行非线性计算以识别失败的快照将用作均质化的输入数据(“宏观”)模型。此模型在最后一节中暴露。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号