首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >COMPARISON OF NUMERICAL COMBUSTION MODELS FOR HYDROGEN AND HYDROGEN-RICH SYNGAS APPLIED FOR DRY-LOW-NO_x-MICROMIX- COMBUSTION
【24h】

COMPARISON OF NUMERICAL COMBUSTION MODELS FOR HYDROGEN AND HYDROGEN-RICH SYNGAS APPLIED FOR DRY-LOW-NO_x-MICROMIX- COMBUSTION

机译:氢和富氢混合气数值燃烧模型在干式低NO_x-微粉燃烧中的比较

获取原文

摘要

The Dry-Low-NO_x (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NO_x emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NO_x emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H_2-CO) numerical analyses based on a skeletal H_2/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.
机译:干低NO_x(DLN)微混合燃烧技术已被开发为低排放燃烧原理,适用于以氢气或合成气为燃料的工业燃气轮机。燃烧过程基于射流交叉流混合现象。燃料垂直注入空气中,并在许多小型的,类似扩散的火焰中燃烧。由于反应物在火焰中的停留时间非常短,因此火焰的小型化导致NO_x排放量显着减少。在Micromix研究方法中,CFD分析已针对实验结果进行了验证。数值和实验方法的结合可以实现DLN Micromix燃烧器的高效设计和优化,涉及燃烧稳定性和低NO_x排放。本文对氢和富氢合成气的几种数值燃烧模型进行了比较。它们在底层反应机制的复杂性和相关的计算工作上有所不同。对于纯氢气燃烧,使用包含有限速率动力学的混合Eddy-Break-up模型进行一步全局反应。对模型进行评估并与Li等人得出的详细氢燃烧机理进行了比较。包括9种和19个可逆的基本反应。基于这种机制,通过应用火焰生成歧管(FGM)方法可减少计算工作量,同时保持详细反应方案的准确性。对于富含氢的合成气燃烧(H_2-CO),基于由Hawkes等人得出的骨架H_2 / CO反应机理的数值分析。以及Ranzi等人提供的详细反应机理。执行。燃烧模型之间的比较和数值结果的验证是基于可从DLN Micromix燃烧器进行的实验研究获得的废气成分。进行的评估确认,所应用的详细燃烧机制能够准确预测DLN-Micromix燃烧过程的一般物理性质。事实证明,“火焰产生歧管”方法通常适用于减少计算工作量,同时又能保持详细化学反应的准确性。特别是对于具有高种类物种的反应机理,使用FGM模型可以平衡计算量和计算量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号