首页> 外文会议>Structural Engineers Association of California convention >'Yield Link' Connection Providing Ductility and Hysteretic Energy Dissipation with Easily Replaceable Elements to Reduce Earthquake Damage and Recovery Time
【24h】

'Yield Link' Connection Providing Ductility and Hysteretic Energy Dissipation with Easily Replaceable Elements to Reduce Earthquake Damage and Recovery Time

机译:“ Yield Link”连接提供延展性和滞后能量耗散,并具有易于更换的元件,以减少地震破坏和恢复时间

获取原文

摘要

Seismic retrofitting of "soft, weak, or open front" (SWOF) buildings presents tactical challenges for engineers. Utilities and other obstructions often make moment-resisting frames difficult to install. The most viable retrofit component is often a cantilevered column with appropriate new foundation. The author has designed conventional cantilevered columns for about thirty SWOF retrofits. The SEAOC Blue Book suggests strategies that rationalize designing cantilevered columns using the R factor for the overall building. Plywood shear walls are typically used as the lateral force resisting system in SWOF buildings. Using the R factor for plywood shear walls instead of R for cantilevered column systems reduces seismic design forces, thus reducing construction costs. However, building officials may not accept the Blue Book rationale; furthermore, designers may wish to increase the ductility of cantilevered columns. This paper describes a patent-pending lateral force resisting assembly made using standard HSS and rolled steel shapes, with yield links cut from steel bar or plate stock. All components bolt together, further reducing costs by eliminating welding and related special inspection fees. After an earthquake the components can be disassembled relatively easily to replace damaged yield links. Preliminary testing indicates the method has very high ductility. Following modified CUREE test protocol, preliminary test specimens consistently withstood ten or more load cycles at "scaled" story drift of 3% (the limit of the testing apparatus). Engineers can design the yield links to accommodate loading demands from typical wood-framed SWOF buildings using a single bracing assembly at the weak wall. Since the anticipated use of this method is in combination with plywood shear walls, analysis and testing focuses on meeting the ductility, overstrength, and deflection characteristics to comply with ASTM and NEHRP requirements for plywood shear walls and pre-fabricated shear-wall components. This would justify using R for plywood shear walls when designing cantilevered columns with yield links connecting them to the structure above.
机译:“软,弱或开放式”(SWOF)建筑物的抗震改造给工程师带来了战术上的挑战。实用程序和其他障碍物经常使耐力矩的框架难以安装。最可行的改造组件通常是带有适当新基础的悬臂式色谱柱。作者设计了大约30种SWOF改造的常规悬臂柱。 SEAOC蓝皮书提出了使用R因子对整个建筑合理设计悬臂柱的策略。胶合板剪力墙通常用作SWOF建筑物中的侧向抗力系统。在胶合板剪力墙中使用R系数,而在悬臂式柱系统中使用R系数可以减少抗震设计力,从而降低了施工成本。但是,建筑官员可能不接受《蓝皮书》的基本原理。此外,设计人员可能希望增加悬臂柱的延展性。本文介绍了使用标准HSS和轧钢形状制造的,正在申请专利的横向抗力组件,其屈服连杆由钢筋或板坯切割而成。所有组件用螺栓固定在一起,从而消除了焊接和相关的特殊检查费用,从而进一步降低了成本。地震后,可以相对容易地拆卸组件,以替换损坏的屈服连杆。初步测试表明该方法具有很高的延展性。按照修改后的CUREE测试规程,初步测试样本在3%的“标称”层间漂移(测试设备的极限)下始终经受了十个或更多个载荷循环。工程师可以使用弱壁处的单个支撑组件来设计屈服连杆,以适应典型木构SWOF建筑物的负载需求。由于此方法的预期用途是与胶合板剪力墙结合使用,因此分析和测试的重点是满足延展性,超强度和挠度特性,以符合ASTM和NEHRP对胶合板剪力墙和预制剪力墙构件的要求。当设计悬臂柱时,使用屈服连杆将其连接到上面的结构时,这对于使用胶合板剪力墙来证明是合理的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号