首页> 外文会议>ASME international mechanical engineering congress and exposition >THERMAL STRESS ANALYSIS OF GYPSUM SHELL CRACKING IN POLYJET-BASED RAPID CASTING OF CELLULAR METALS
【24h】

THERMAL STRESS ANALYSIS OF GYPSUM SHELL CRACKING IN POLYJET-BASED RAPID CASTING OF CELLULAR METALS

机译:多孔金属基快速铸造中石膏壳开裂的热应力分析

获取原文

摘要

Cellular (or lattice) metals are increasingly gaining attention for their having combinations of mechanical, thermal, and acoustic properties that provide potential opportunities for diverse multifunctional structural implementations. These include ultra-light structures with high specific strength and high specific strain, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. The emerging 3D printing technologies including direct and indirect additive manufacturing processes may accelerate the realization of their structural applications of cellular metals. For indirect additive manufacturing processes, sacrificial patterns are 3D printed with castable polymers, followed by metal filling into a mold cavity to make final cellular metals. With a high stiffness of a castable polymer, e.g., VisiJet® Procast, it is possible to build network lattice cellular structures, replacing wax which has been used for traditional investment casting processes. In general, a high thermal stress is expected during burning-out process of the rapid casing. Due to the castable polymer's new properties, no literature is available on thermal stress between the castable polymer and ceramic shells for indirect additive manufacturing of cellular structures. The objective of this study is to investigate ⅰ) thermal stress by thermal expansion mismatch between a sacrificial pattern made of a castable polymer and a coated gypsum shell and ⅱ) an effect of the thickness of the coated gypsum shell on thermal cracking. Starting with thermal analysis, glass transition temperature, melting temperature and thermal expansion coefficient are obtained from experiments. An analytical model for thermal stress analysis is constructed with thermo-mechanical constitutive equations and compatibility equations, followed by a failure analysis at the coated shells where gypsum is used for coating the sacrificial pattern. The thermo-mechanical analysis is conducted as a function of temperature and coated shell thickness followed by a numerical validation with a finite element (FE) based simulation. The castable polymer has the potential to be used as a base material for manufacturing 3D network cellular sacrificial patterns with thin cell walls over conventional wax materials due to its high modulus and low thermal expansion coefficient during the burning out process of the sacrificial pattern.
机译:蜂窝(或晶格)金属由于具有机械,热和声学特性的组合而日益受到关注,这些组合为各种多功能结构实现提供了潜在的机会。这些包括具有高比强度和高比应变的超轻型结构,出色的冲击吸收性,隔音性,散热介质和紧凑型热交换器。包括直接和间接增材制造工艺在内的新兴3D打印技术可能会加速其蜂窝金属结构应用的实现。对于间接增材制造工艺,使用可浇铸的聚合物3D打印牺牲图案,然后将金属填充到模腔中以制成最终的蜂窝状金属。借助高刚性的可浇铸聚合物(例如VisiJet®Procast),可以构建网络晶格多孔结构,从而替代传统熔模铸造工艺中使用的蜡。通常,在快速外壳的烧尽过程中,预计会有很高的热应力。由于可浇铸聚合物的新特性,目前尚无关于间接浇铸蜂窝结构的可浇铸聚合物与陶瓷外壳之间热应力的文献。这项研究的目的是研究ⅰ)由可浇铸聚合物和涂层石膏壳制成的牺牲图案之间的热膨胀失配引起的热应力,以及ⅱ)涂层石膏壳厚度对热裂的影响。从热分析开始,从实验中获得玻璃化转变温度,熔融温度和热膨胀系数。利用热机械本构方程和相容性方程,构建了用于热应力分析的分析模型,然后在涂覆的壳体(使用石膏涂覆牺牲图案)上进行了失效分析。根据温度和涂层外壳厚度进行热机械分析,然后使用基于有限元(FE)的模拟进行数值验证。由于在牺牲图案的烧尽过程中其高模量和低热膨胀系数,因此可浇铸聚合物具有用作制造3D网络蜂窝牺牲图案的基础材料的潜力,该3D网络蜂窝牺牲图案具有比常规蜡材料薄的单元壁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号