首页> 外文会议>ASME international mechanical engineering congress and exposition >TRANSIENT THERMOFLUIDS ANALYSIS OF A GROUND-LEVEL INTEGRATED DIVERSE ENERGY STORAGE (GLIDES) SYSTEM
【24h】

TRANSIENT THERMOFLUIDS ANALYSIS OF A GROUND-LEVEL INTEGRATED DIVERSE ENERGY STORAGE (GLIDES) SYSTEM

机译:地面综合多种储能(滑行)系统的瞬态热流体分析

获取原文

摘要

In this work, a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system which can store energy via input of electricity or heat and deliver dispatchable electricity is presented. The proposed system is low-cost and hybridizes compressed air and pumped-storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. A detailed control-volume energy analysis of the system is carried out, yielding a set of coupled differential equations which are discretized using a finite difference scheme and used to model the transient response during charging and discharging. The energy analysis includes coupled heat transfer and pressure drop analysis used to predict system losses for more accurate round trip efficiency (RTE) calculations and specific energy density (ED) predictions. Preliminary analysis of the current prototype indicates an electric-to-electric RTE_E of 66% (corresponding to shaft-to-shaft mechanical RTE_M of 78%) and ED of 2.5 MJ/m~3 of air, given initial air volume and pressure of 2 m~3 and 70 bar. The electric power output ranges from a max of 2.5 kW to a min of 1.2 kW and the output current ranges from a max of approximately 21 amps to approximately 10 amps at 120 V, 60 Hz dispatchable electricity, over a period of approximately 50 minutes. Additionally, it is shown that heat transfer enhancement to the point of a 5-fold increase in air heat transfer rates results in a near 5% improvement in RTE_E (70% considering all component losses). Additional component efficiency improvements and efficiency gains due to system scale-up could see higher achievable RTEs.
机译:在这项工作中,提出了一种新颖的地面综合多元储能(GLIDES)系统,该系统可以通过输入电能或热量来存储能量并输送可调度的电能。拟议中的系统是低成本的,并且混合了压缩空气和抽水蓄能方法,从而可以在高峰时段非高峰期存储间歇性可再生能源。对该系统进行了详细的控制量能量分析,得出了一组耦合的微分方程,这些方程使用有限差分法离散化,并用于对充电和放电期间的瞬态响应进行建模。能量分析包括热传递和压降耦合分析,用于预测系统损耗,以实现更准确的往返效率(RTE)计算和比能量密度(ED)预测。对当前原型机的初步分析表明,在初始风量和压力为0的情况下,电动RTE_E为66%(对应于轴对机械RTE_M为78%),ED为2.5 MJ / m〜3空气。 2 m〜3和70 bar。在大约50分钟的时间内,在120 V,60 Hz的可调度电力下,输出的功率范围从最大2.5 kW到最小1.2 kW,输出电流从最大范围21 amps到大约10 amps。此外,还表明,传热增强到空气传热速率提高了5倍,导致RTE_E提升了近5%(考虑到所有组件损耗,则提高了70%)。由于系统规模扩大,进一步提高了组件效率并提高了效率,因此可以实现更高的RTE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号